CWE

Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.5)  
ID

CWE-441: Unintended Proxy or Intermediary ('Confused Deputy')

Weakness ID: 441
Abstraction: Class
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The product receives a request, message, or directive from an upstream component, but the product does not sufficiently preserve the original source of the request before forwarding the request to an external actor that is outside of the product's control sphere. This causes the product to appear to be the source of the request, leading it to act as a proxy or other intermediary between the upstream component and the external actor.
+ Extended Description

If an attacker cannot directly contact a target, but the product has access to the target, then the attacker can send a request to the product and have it be forwarded to the target. The request would appear to be coming from the product's system, not the attacker's system. As a result, the attacker can bypass access controls (such as firewalls) or hide the source of malicious requests, since the requests would not be coming directly from the attacker.

Since proxy functionality and message-forwarding often serve a legitimate purpose, this issue only becomes a vulnerability when:

  • The product runs with different privileges or on a different system, or otherwise has different levels of access than the upstream component;
  • The attacker is prevented from making the request directly to the target; and
  • The attacker can create a request that the proxy does not explicitly intend to be forwarded on the behalf of the requester. Such a request might point to an unexpected hostname, port number, hardware IP, or service. Or, the request might be sent to an allowed service, but the request could contain disallowed directives, commands, or resources.
+ Alternate Terms
Confused Deputy:
This weakness is sometimes referred to as the "Confused deputy" problem, in which an attacker misused the authority of one victim (the "confused deputy") when targeting another victim.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.610Externally Controlled Reference to a Resource in Another Sphere
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.918Server-Side Request Forgery (SSRF)
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.1021Improper Restriction of Rendered UI Layers or Frames
PeerOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.611Improper Restriction of XML External Entity Reference
CanPrecedeClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.668Exposure of Resource to Wrong Sphere
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1198Privilege Separation and Access Control Issues
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1014Identify Actors
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Architecture and DesignREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Language-Independent (Undetermined Prevalence)

Operating Systems

Class: OS-Independent (Undetermined Prevalence)

Architectures

Class: Architecture-Independent (Undetermined Prevalence)

Technologies

Class: Technology-Independent (Undetermined Prevalence)

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Non-Repudiation
Access Control

Technical Impact: Gain Privileges or Assume Identity; Hide Activities; Execute Unauthorized Code or Commands

+ Demonstrative Examples

Example 1

A SoC contains a microcontroller (running ring-3 (least trusted ring) code), a Memory Mapped Input Output (MMIO) mapped IP core (containing design-house secrets), and a Direct Memory Access (DMA) controller, among several other compute elements and peripherals. The SoC implements access control to protect the registers in the IP core (which registers store the design-house secrets) from malicious, ring-3 (least trusted ring) code executing on the microcontroller. The DMA controller, however, is not blocked off from accessing the IP core for functional reasons.

(bad code)
Example Language: Other 
The code in ring-3 (least trusted ring) of the microcontroller attempts to directly read the protected registers in IP core through MMIO transactions. However, this attempt is blocked due to the implemented access control. Now, the microcontroller configures the DMA core to transfer data from the protected registers to a memory region that it has access to. The DMA core, which is acting as an intermediary in this transaction, does not preserve the identity of the microcontroller and, instead, initiates a new transaction with its own identity. Since the DMA core has access, the transaction (and hence, the attack) is successful.

The weakness here is that the intermediary or the proxy agent did not ensure the immutability of the identity of the microcontroller initiating the transaction.

(good code)
Example Language: Other 
The DMA core forwards this transaction with the identity of the code executing on the microcontroller, which is the original initiator of the end-to-end transaction. Now the transaction is blocked, as a result of forwarding the identity of the true initiator which lacks the permission to access the confidential MMIO mapped IP core.
+ Observed Examples
ReferenceDescription
FTP bounce attack. The design of the protocol allows an attacker to modify the PORT command to cause the FTP server to connect to other machines besides the attacker's.
RPC portmapper could redirect service requests from an attacker to another entity, which thinks the requests came from the portmapper.
FTP server does not ensure that the IP address in a PORT command is the same as the FTP user's session, allowing port scanning by proxy.
Web server allows attackers to request a URL from another server, including other ports, which allows proxied scanning.
CGI script accepts and retrieves incoming URLs.
Bounce attack allows access to TFTP from trusted side.
Web-based mail program allows internal network scanning using a modified POP3 port number.
URL-downloading library automatically follows redirects to file:// and scp:// URLs
+ Potential Mitigations

Phase: Architecture and Design

Enforce the use of strong mutual authentication mechanism between the two parties.

Phase: Architecture and Design

Whenever a product is an intermediary or proxy for transactions between two other components, the proxy core should not drop the identity of the initiator of the transaction. The immutability of the identity of the initiator must be maintained and should be forwarded all the way to the target.
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.956SFP Secondary Cluster: Channel Attack
+ Notes

Maintenance

This could possibly be considered as an emergent resource.

Relationship

This weakness has a chaining relationship with CWE-668 (Exposure of Resource to Wrong Sphere) because the proxy effectively provides the attacker with access to the target's resources that the attacker cannot directly obtain.

Theoretical

It could be argued that the "confused deputy" is a fundamental aspect of most vulnerabilities that require an active attacker. Even for common implementation issues such as buffer overflows, SQL injection, OS command injection, and path traversal, the vulnerable program already has the authorization to run code or access files. The vulnerability arises when the attacker causes the program to run unexpected code or access unexpected files.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERUnintended proxy/intermediary
PLOVERProxied Trusted Channel
WASC32Routing Detour
+ References
[REF-432] Norm Hardy. "The Confused Deputy (or why capabilities might have been invented)". 1988. <http://www.cap-lore.com/CapTheory/ConfusedDeputy.html>.
[REF-1125] moparisthebest. "Validation Vulnerabilities". 2015-06-05. <https://mailarchive.ietf.org/arch/msg/acme/s6Q5PdJP48LEUwgzrVuw_XPKCsM/>.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2006-07-19PLOVER
+ Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Potential_Mitigations, Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Relationships, Observed_Example, Other_Notes, Taxonomy_Mappings
2008-11-24CWE Content TeamMITRE
updated Maintenance_Notes, Relationships, Taxonomy_Mappings, Time_of_Introduction
2010-02-16CWE Content TeamMITRE
updated Taxonomy_Mappings
2010-04-05CWE Content TeamMITRE
updated Related_Attack_Patterns
2010-06-21CWE Content TeamMITRE
updated Other_Notes
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2011-06-27CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Related_Attack_Patterns, Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2013-02-21CWE Content TeamMITRE
updated Alternate_Terms, Applicable_Platforms, Description, Maintenance_Notes, Name, Observed_Examples, References, Relationship_Notes, Relationships, Theoretical_Notes, Type
2014-07-30CWE Content TeamMITRE
updated Relationships
2015-12-07CWE Content TeamMITRE
updated Relationships
2017-01-19CWE Content TeamMITRE
updated Relationships
2017-11-08CWE Content TeamMITRE
updated Modes_of_Introduction, Relationships
2019-06-20CWE Content TeamMITRE
updated Relationships
2020-02-24CWE Content TeamMITRE
updated Relationships
2020-08-14CWE Content TeamMITRE
Per Intel Corporation suggestion, added language to be inclusive to hardware: updated Demonstrative_Examples, Description, Extended_Description, Applicable_Platforms, Potential_Mitigation, Common_Consequences, References
2020-08-20CWE Content TeamMITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Description, Potential_Mitigations, References, Relationships
+ Previous Entry Names
Change DatePrevious Entry Name
2013-02-21Unintended Proxy/Intermediary
More information is available — Please select a different filter.
Page Last Updated: July 20, 2021