CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.15)  
ID

CWE-493: Critical Public Variable Without Final Modifier

Weakness ID: 493
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: VariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product has a critical public variable that is not final, which allows the variable to be modified to contain unexpected values.
+ Extended Description
If a field is non-final and public, it can be changed once the value is set by any function that has access to the class which contains the field. This could lead to a vulnerability if other parts of the program make assumptions about the contents of that field.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Integrity

Technical Impact: Modify Application Data

The object could potentially be tampered with.
Confidentiality

Technical Impact: Read Application Data

The object could potentially allow the object to be read.
+ Potential Mitigations

Phase: Implementation

Declare all public fields as final when possible, especially if it is used to maintain internal state of an Applet or of classes used by an Applet. If a field must be public, then perform all appropriate sanity checks before accessing the field from your code.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.668Exposure of Resource to Wrong Sphere
ParentOfVariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.500Public Static Field Not Marked Final
+ Background Details
Mobile code, such as a Java Applet, is code that is transmitted across a network and executed on a remote machine. Because mobile code developers have little if any control of the environment in which their code will execute, special security concerns become relevant. One of the biggest environmental threats results from the risk that the mobile code will run side-by-side with other, potentially malicious, mobile code. Because all of the popular web browsers execute code from multiple sources together in the same JVM, many of the security guidelines for mobile code are focused on preventing manipulation of your objects' state and behavior by adversaries who have access to the same virtual machine where your program is running. Final provides security by only allowing non-mutable objects to be changed after being set. However, only objects which are not extended can be made final.
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Java (Undetermined Prevalence)

C++ (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

Suppose this WidgetData class is used for an e-commerce web site. The programmer attempts to prevent price-tampering attacks by setting the price of the widget using the constructor.

(bad code)
Example Language: Java 
public final class WidgetData extends Applet {
public float price;
...
public WidgetData(...) {
this.price = LookupPrice("MyWidgetType");
}
}

The price field is not final. Even though the value is set by the constructor, it could be modified by anybody that has access to an instance of WidgetData.


Example 2

Assume the following code is intended to provide the location of a configuration file that controls execution of the application.

(bad code)
Example Language: C++ 
public string configPath = "/etc/application/config.dat";
(bad code)
Example Language: Java 
public String configPath = new String("/etc/application/config.dat");

While this field is readable from any function, and thus might allow an information leak of a pathname, a more serious problem is that it can be changed by any function.


+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.4857PK - Encapsulation
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.849The CERT Oracle Secure Coding Standard for Java (2011) Chapter 6 - Object Orientation (OBJ)
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1002SFP Secondary Cluster: Unexpected Entry Points
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1403Comprehensive Categorization: Exposed Resource
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
7 Pernicious KingdomsMobile Code: Non-Final Public Field
CLASPFailure to provide confidentiality for stored data
The CERT Oracle Secure Coding Standard for Java (2011)OBJ10-JDo not use public static nonfinal variables
Software Fault PatternsSFP28Unexpected access points
+ References
[REF-6] Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools Techniques and Metrics. NIST. 2005-11-07. <https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf>.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2006-07-19
(CWE Draft 3, 2006-07-19)
7 Pernicious Kingdoms
+ Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Applicable_Platforms, Common_Consequences, Description, Likelihood_of_Exploit, Relationships, Other_Notes, Taxonomy_Mappings
2008-11-24CWE Content TeamMITRE
updated Background_Details, Demonstrative_Examples, Description, Other_Notes, Potential_Mitigations
2009-05-27CWE Content TeamMITRE
updated Background_Details, Demonstrative_Examples, Description, Relationships
2011-06-01CWE Content TeamMITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2012-05-11CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2019-01-03CWE Content TeamMITRE
updated Taxonomy_Mappings
2020-02-24CWE Content TeamMITRE
updated References, Relationships
2023-04-27CWE Content TeamMITRE
updated Detection_Factors, Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
+ Previous Entry Names
Change DatePrevious Entry Name
2008-04-11Mobile Code: Non-final Public Field
Page Last Updated: July 16, 2024