CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-501: Trust Boundary Violation (4.16)  
ID

CWE-501: Trust Boundary Violation

Weakness ID: 501
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product mixes trusted and untrusted data in the same data structure or structured message.
+ Extended Description
A trust boundary can be thought of as line drawn through a program. On one side of the line, data is untrusted. On the other side of the line, data is assumed to be trustworthy. The purpose of validation logic is to allow data to safely cross the trust boundary - to move from untrusted to trusted. A trust boundary violation occurs when a program blurs the line between what is trusted and what is untrusted. By combining trusted and untrusted data in the same data structure, it becomes easier for programmers to mistakenly trust unvalidated data.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Access Control

Technical Impact: Bypass Protection Mechanism

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 664 Improper Control of a Resource Through its Lifetime
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 265 Privilege Issues
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

The following code accepts an HTTP request and stores the username parameter in the HTTP session object before checking to ensure that the user has been authenticated.

(bad code)
Example Language: Java 
usrname = request.getParameter("usrname");
if (session.getAttribute(ATTR_USR) == null) {
session.setAttribute(ATTR_USR, usrname);
}
(bad code)
Example Language: C# 
usrname = request.Item("usrname");
if (session.Item(ATTR_USR) == null) {
session.Add(ATTR_USR, usrname);
}

Without well-established and maintained trust boundaries, programmers will inevitably lose track of which pieces of data have been validated and which have not. This confusion will eventually allow some data to be used without first being validated.


+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 485 7PK - Encapsulation
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 963 SFP Secondary Cluster: Exposed Data
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1348 OWASP Top Ten 2021 Category A04:2021 - Insecure Design
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1364 ICS Communications: Zone Boundary Failures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1416 Comprehensive Categorization: Resource Lifecycle Management
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Trust Boundary Violation
Software Fault Patterns SFP23 Exposed Data
+ References
[REF-6] Katrina Tsipenyuk, Brian Chess and Gary McGraw. "Seven Pernicious Kingdoms: A Taxonomy of Software Security Errors". NIST Workshop on Software Security Assurance Tools Techniques and Metrics. NIST. 2005-11-07. <https://samate.nist.gov/SSATTM_Content/papers/Seven%20Pernicious%20Kingdoms%20-%20Taxonomy%20of%20Sw%20Security%20Errors%20-%20Tsipenyuk%20-%20Chess%20-%20McGraw.pdf>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
7 Pernicious Kingdoms
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Demonstrative_Example, Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Description, Relationships, Other_Notes, Taxonomy_Mappings
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2012-05-11 CWE Content Team MITRE
updated Relationships
2014-06-23 CWE Content Team MITRE
updated Description, Other_Notes
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Relationships
2020-02-24 CWE Content Team MITRE
updated References
2021-10-28 CWE Content Team MITRE
updated Relationships
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes, Relationships
Page Last Updated: November 19, 2024