CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-585: Empty Synchronized Block (4.16)  
ID

CWE-585: Empty Synchronized Block

Weakness ID: 585
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product contains an empty synchronized block.
+ Extended Description
An empty synchronized block does not actually accomplish any synchronization and may indicate a troubled section of code. An empty synchronized block can occur because code no longer needed within the synchronized block is commented out without removing the synchronized block.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Other

Technical Impact: Other

An empty synchronized block will wait until nobody else is using the synchronizer being specified. While this may be part of the desired behavior, because you haven't protected the subsequent code by placing it inside the synchronized block, nothing is stopping somebody else from modifying whatever it was you were waiting for while you run the subsequent code.
+ Potential Mitigations

Phase: Implementation

When you come across an empty synchronized statement, or a synchronized statement in which the code has been commented out, try to determine what the original intentions were and whether or not the synchronized block is still necessary.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1071 Empty Code Block
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Java (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

The following code attempts to synchronize on an object, but does not execute anything in the synchronized block. This does not actually accomplish anything and may be a sign that a programmer is wrestling with synchronization but has not yet achieved the result they intend.

(bad code)
Example Language: Java 
synchronized(this) { }

Instead, in a correct usage, the synchronized statement should contain procedures that access or modify data that is exposed to multiple threads. For example, consider a scenario in which several threads are accessing student records at the same time. The method which sets the student ID to a new value will need to make sure that nobody else is accessing this data at the same time and will require synchronization.

(good code)
 
public void setID(int ID){
synchronized(this){
this.ID = ID;
}
}

+ Weakness Ordinalities
Ordinality Description
Indirect
(where the weakness is a quality issue that might indirectly make it easier to introduce security-relevant weaknesses or make them more difficult to detect)
+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 987 SFP Secondary Cluster: Multiple Locks/Unlocks
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1412 Comprehensive Categorization: Poor Coding Practices
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP21 Multiple locks/unlocks
+ References
[REF-478] "Intrinsic Locks and Synchronization (in Java)". <https://docs.oracle.com/javase/tutorial/essential/concurrency/locksync.html>. URL validated: 2023-04-07.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-12-15
(CWE Draft 5, 2006-12-15)
CWE Community
Submitted by members of the CWE community to extend early CWE versions
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Potential_Mitigations, Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Relationships, Other_Notes
2009-05-27 CWE Content Team MITRE
updated Common_Consequences, Demonstrative_Examples, Description, Other_Notes, Potential_Mitigations, References
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2012-05-11 CWE Content Team MITRE
updated Relationships
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Relationships
2019-01-03 CWE Content Team MITRE
updated Relationships, Weakness_Ordinalities
2020-02-24 CWE Content Team MITRE
updated Relationships, Type
2023-01-31 CWE Content Team MITRE
updated Description
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, References, Relationships, Type
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Demonstrative_Examples
Page Last Updated: November 19, 2024