CWE-609: Double-Checked Locking
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses double-checked locking to access a resource without the overhead of explicit synchronization, but the locking is insufficient.
Double-checked locking refers to the situation where a programmer checks to see if a resource has been initialized, grabs a lock, checks again to see if the resource has been initialized, and then performs the initialization if it has not occurred yet. This should not be done, as it is not guaranteed to work in all languages and on all architectures. In summary, other threads may not be operating inside the synchronous block and are not guaranteed to see the operations execute in the same order as they would appear inside the synchronous block.
![]()
![]() ![]()
![]() ![]()
![]()
![]() Languages Java (Undetermined Prevalence) Example 1 It may seem that the following bit of code achieves thread safety while avoiding unnecessary synchronization... (bad code)
Example Language: Java
if (helper == null) {
synchronized (this) {
if (helper == null) { }helper = new Helper(); }return helper; The programmer wants to guarantee that only one Helper() object is ever allocated, but does not want to pay the cost of synchronization every time this code is called. Suppose that helper is not initialized. Then, thread A sees that helper==null and enters the synchronized block and begins to execute: (bad code)
helper = new Helper();
If a second thread, thread B, takes over in the middle of this call and helper has not finished running the constructor, then thread B may make calls on helper while its fields hold incorrect values. ![]()
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |