CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.15)  
ID

CWE-639: Authorization Bypass Through User-Controlled Key

Weakness ID: 639
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The system's authorization functionality does not prevent one user from gaining access to another user's data or record by modifying the key value identifying the data.
+ Extended Description

Retrieval of a user record occurs in the system based on some key value that is under user control. The key would typically identify a user-related record stored in the system and would be used to lookup that record for presentation to the user. It is likely that an attacker would have to be an authenticated user in the system. However, the authorization process would not properly check the data access operation to ensure that the authenticated user performing the operation has sufficient entitlements to perform the requested data access, hence bypassing any other authorization checks present in the system.

For example, attackers can look at places where user specific data is retrieved (e.g. search screens) and determine whether the key for the item being looked up is controllable externally. The key may be a hidden field in the HTML form field, might be passed as a URL parameter or as an unencrypted cookie variable, then in each of these cases it will be possible to tamper with the key value.

One manifestation of this weakness is when a system uses sequential or otherwise easily-guessable session IDs that would allow one user to easily switch to another user's session and read/modify their data.

+ Alternate Terms
Insecure Direct Object Reference / IDOR:
The "Insecure Direct Object Reference" term, as described in the OWASP Top Ten, is broader than this CWE because it also covers path traversal (CWE-22). Within the context of vulnerability theory, there is a similarity between the OWASP concept and CWE-706: Use of Incorrectly-Resolved Name or Reference.
Broken Object Level Authorization / BOLA:
BOLA is used in the 2019 OWASP API Security Top 10 and is said to be the same as IDOR.
Horizontal Authorization:
"Horizontal Authorization" is used to describe situations in which two users have the same privilege level, but must be prevented from accessing each other's resources. This is fairly common when using key-based access to resources in a multi-user context.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Access Control

Technical Impact: Bypass Protection Mechanism

Access control checks for specific user data or functionality can be bypassed.
Access Control

Technical Impact: Gain Privileges or Assume Identity

Horizontal escalation of privilege is possible (one user can view/modify information of another user).
Access Control

Technical Impact: Gain Privileges or Assume Identity

Vertical escalation of privilege is possible if the user-controlled key is actually a flag that indicates administrator status, allowing the attacker to gain administrative access.
+ Potential Mitigations

Phase: Architecture and Design

For each and every data access, ensure that the user has sufficient privilege to access the record that is being requested.

Phases: Architecture and Design; Implementation

Make sure that the key that is used in the lookup of a specific user's record is not controllable externally by the user or that any tampering can be detected.

Phase: Architecture and Design

Use encryption in order to make it more difficult to guess other legitimate values of the key or associate a digital signature with the key so that the server can verify that there has been no tampering.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.863Incorrect Authorization
ParentOfVariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.566Authorization Bypass Through User-Controlled SQL Primary Key
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1212Authorization Errors
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.840Business Logic Errors
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.863Incorrect Authorization
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1011Authorize Actors
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
NatureTypeIDName
ChildOfPillarPillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.284Improper Access Control
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Architecture and DesignREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user.

(bad code)
Example Language: C# 
...
conn = new SqlConnection(_ConnectionString);
conn.Open();
int16 id = System.Convert.ToInt16(invoiceID.Text);
SqlCommand query = new SqlCommand( "SELECT * FROM invoices WHERE id = @id", conn);
query.Parameters.AddWithValue("@id", id);
SqlDataReader objReader = objCommand.ExecuteReader();
...

The problem is that the developer has not considered all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker can bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user.


+ Observed Examples
ReferenceDescription
An educational application does not appropriately restrict file IDs to a particular user. The attacker can brute-force guess IDs, indicating IDOR.
+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.715OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.723OWASP Top Ten 2004 Category A2 - Broken Access Control
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.813OWASP Top Ten 2010 Category A4 - Insecure Direct Object References
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.932OWASP Top Ten 2013 Category A4 - Insecure Direct Object References
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.945SFP Secondary Cluster: Insecure Resource Access
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1031OWASP Top Ten 2017 Category A5 - Broken Access Control
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1345OWASP Top Ten 2021 Category A01:2021 - Broken Access Control
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1396Comprehensive Categorization: Access Control
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2008-01-30
(CWE Draft 8, 2008-01-30)
Evgeny LebanidzeCigital
+ Modifications
Modification DateModifierOrganization
2008-09-08CWE Content TeamMITRE
updated Common_Consequences, Relationships, Type
2008-10-14CWE Content TeamMITRE
updated Description
2009-03-10CWE Content TeamMITRE
updated Relationships
2009-05-27CWE Content TeamMITRE
updated Relationships
2009-10-29CWE Content TeamMITRE
updated Common_Consequences
2010-06-21CWE Content TeamMITRE
updated Relationships
2011-03-29CWE Content TeamMITRE
updated Alternate_Terms, Applicable_Platforms, Description, Name, Potential_Mitigations, Relationships
2011-06-01CWE Content TeamMITRE
updated Common_Consequences, Relationships
2012-05-11CWE Content TeamMITRE
updated Relationships
2013-02-21CWE Content TeamMITRE
updated Alternate_Terms, Common_Consequences
2013-07-17CWE Content TeamMITRE
updated Relationships
2014-07-30CWE Content TeamMITRE
updated Relationships
2017-11-08CWE Content TeamMITRE
updated Description, Enabling_Factors_for_Exploitation, Modes_of_Introduction, Relationships
2018-03-27CWE Content TeamMITRE
updated Relationships
2019-06-20CWE Content TeamMITRE
updated Relationships
2020-02-24CWE Content TeamMITRE
updated Relationships
2020-06-25CWE Content TeamMITRE
updated Alternate_Terms
2020-12-10CWE Content TeamMITRE
updated Relationships
2021-03-15CWE Content TeamMITRE
updated Alternate_Terms
2021-10-28CWE Content TeamMITRE
updated Relationships
2023-04-27CWE Content TeamMITRE
updated Detection_Factors, Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
2023-10-26CWE Content TeamMITRE
updated Observed_Examples
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content TeamMITRE
updated Demonstrative_Examples
+ Previous Entry Names
Change DatePrevious Entry Name
2011-03-29Access Control Bypass Through User-Controlled Key
Page Last Updated: July 16, 2024