CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax (4.16)  
ID

CWE-644: Improper Neutralization of HTTP Headers for Scripting Syntax

Weakness ID: 644
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product does not neutralize or incorrectly neutralizes web scripting syntax in HTTP headers that can be used by web browser components that can process raw headers, such as Flash.
+ Extended Description

An attacker may be able to conduct cross-site scripting and other attacks against users who have these components enabled.

If a product does not neutralize user controlled data being placed in the header of an HTTP response coming from the server, the header may contain a script that will get executed in the client's browser context, potentially resulting in a cross site scripting vulnerability or possibly an HTTP response splitting attack. It is important to carefully control data that is being placed both in HTTP response header and in the HTTP response body to ensure that no scripting syntax is present, taking various encodings into account.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Integrity
Confidentiality
Availability

Technical Impact: Execute Unauthorized Code or Commands

Run arbitrary code.
Confidentiality

Technical Impact: Read Application Data

Attackers may be able to obtain sensitive information.
+ Potential Mitigations

Phase: Architecture and Design

Perform output validation in order to filter/escape/encode unsafe data that is being passed from the server in an HTTP response header.

Phase: Architecture and Design

Disable script execution functionality in the clients' browser.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 116 Improper Encoding or Escaping of Output
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: Web Based (Undetermined Prevalence)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

In the following Java example, user-controlled data is added to the HTTP headers and returned to the client. Given that the data is not subject to neutralization, a malicious user may be able to inject dangerous scripting tags that will lead to script execution in the client browser.

(bad code)
Example Language: Java 
response.addHeader(HEADER_NAME, untrustedRawInputData);

+ Observed Examples
Reference Description
Web server does not remove the Expect header from an HTTP request when it is reflected back in an error message, allowing a Flash SWF file to perform XSS attacks.
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 725 OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) Flaws
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 990 SFP Secondary Cluster: Tainted Input to Command
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1347 OWASP Top Ten 2021 Category A03:2021 - Injection
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1407 Comprehensive Categorization: Improper Neutralization
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
Software Fault Patterns SFP24 Tainted input to command
+ Content History
+ Submissions
Submission Date Submitter Organization
2008-01-30
(CWE Draft 8, 2008-01-30)
Evgeny Lebanidze Cigital
+ Modifications
Modification Date Modifier Organization
2008-07-01 Sean Eidemiller Cigital
added/updated demonstrative examples
2008-09-08 CWE Content Team MITRE
updated Common_Consequences, Relationships, Observed_Example
2008-10-14 CWE Content Team MITRE
updated Description, Name, Observed_Examples, Relationships
2009-03-10 CWE Content Team MITRE
updated Relationships
2009-05-27 CWE Content Team MITRE
updated Description, Name
2009-10-29 CWE Content Team MITRE
updated Common_Consequences
2010-04-05 CWE Content Team MITRE
updated Description, Name
2010-06-21 CWE Content Team MITRE
updated Demonstrative_Examples, Description, Observed_Examples
2010-12-13 CWE Content Team MITRE
updated Common_Consequences
2011-03-29 CWE Content Team MITRE
updated Description
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2012-05-11 CWE Content Team MITRE
updated Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Enabling_Factors_for_Exploitation
2020-02-24 CWE Content Team MITRE
updated Applicable_Platforms, Relationships
2021-10-28 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2023-04-27 CWE Content Team MITRE
updated Relationships, Time_of_Introduction
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
+ Previous Entry Names
Change Date Previous Entry Name
2008-10-14 Insufficient Filtering of HTTP Headers for Scripting Syntax
2009-05-27 Insufficient Sanitization of HTTP Headers for Scripting Syntax
2010-04-05 Improper Sanitization of HTTP Headers for Scripting Syntax
Page Last Updated: November 19, 2024