CWE-749: Exposed Dangerous Method or Function
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product provides an Applications Programming Interface (API) or similar interface for interaction with external actors, but the interface includes a dangerous method or function that is not properly restricted.
This weakness can lead to a wide variety of resultant weaknesses, depending on the behavior of the exposed method. It can apply to any number of technologies and approaches, such as ActiveX controls, Java functions, IOCTLs, and so on. The exposure can occur in a few different ways:
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Example 1 In the following Java example the method removeDatabase will delete the database with the name specified in the input parameter. (bad code)
Example Language: Java
public void removeDatabase(String databaseName) {
try {
Statement stmt = conn.createStatement();
stmt.execute("DROP DATABASE " + databaseName); The method in this example is declared public and therefore is exposed to any class in the application. Deleting a database should be considered a critical operation within an application and access to this potentially dangerous method should be restricted. Within Java this can be accomplished simply by declaring the method private thereby exposing it only to the enclosing class as in the following example. (good code)
Example Language: Java
private void removeDatabase(String databaseName) {
try {
Statement stmt = conn.createStatement();
stmt.execute("DROP DATABASE " + databaseName); } Example 2 These Android and iOS applications intercept URL loading within a WebView and perform special actions if a particular URL scheme is used, thus allowing the Javascript within the WebView to communicate with the application: (bad code)
Example Language: Java
// Android
@Override public boolean shouldOverrideUrlLoading(WebView view, String url){ if (url.substring(0,14).equalsIgnoreCase("examplescheme:")){
if(url.substring(14,25).equalsIgnoreCase("getUserInfo")){ }writeDataToView(view, UserData); }return false; else{ return true; }(bad code)
Example Language: Objective-C
// iOS
-(BOOL) webView:(UIWebView *)exWebView shouldStartLoadWithRequest:(NSURLRequest *)exRequest navigationType:(UIWebViewNavigationType)exNavigationType { NSURL *URL = [exRequest URL];
if ([[URL scheme] isEqualToString:@"exampleScheme"]) { NSString *functionString = [URL resourceSpecifier];
if ([functionString hasPrefix:@"specialFunction"]) { // Make data available back in webview. UIWebView *webView = [self writeDataToView:[URL query]]; return NO; return YES; A call into native code can then be initiated by passing parameters within the URL: (attack code)
Example Language: JavaScript
window.location = examplescheme://method?parameter=value
Because the application does not check the source, a malicious website loaded within this WebView has the same access to the API as a trusted site. Example 3 This application uses a WebView to display websites, and creates a Javascript interface to a Java object to allow enhanced functionality on a trusted website: (bad code)
Example Language: Java
public class WebViewGUI extends Activity {
WebView mainWebView;
public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); }mainWebView = new WebView(this); mainWebView.getSettings().setJavaScriptEnabled(true); mainWebView.addJavascriptInterface(new JavaScriptInterface(), "userInfoObject"); mainWebView.loadUrl("file:///android_asset/www/index.html"); setContentView(mainWebView); final class JavaScriptInterface { JavaScriptInterface () {}
public String getUserInfo() { return currentUser.Info(); }Before Android 4.2 all methods, including inherited ones, are exposed to Javascript when using addJavascriptInterface(). This means that a malicious website loaded within this WebView can use reflection to acquire a reference to arbitrary Java objects. This will allow the website code to perform any action the parent application is authorized to. For example, if the application has permission to send text messages: (attack code)
Example Language: JavaScript
<script>
userInfoObject.getClass().forName('android.telephony.SmsManager').getMethod('getDefault',null).sendTextMessage(attackNumber, null, attackMessage, null, null); </script>This malicious script can use the userInfoObject object to load the SmsManager object and send arbitrary text messages to any recipient. Example 4 After Android 4.2, only methods annotated with @JavascriptInterface are available in JavaScript, protecting usage of getClass() by default, as in this example: (bad code)
Example Language: Java
final class JavaScriptInterface {
JavaScriptInterface () { }
@JavascriptInterface public String getUserInfo() { return currentUser.Info(); }This code is not vulnerable to the above attack, but still may expose user info to malicious pages loaded in the WebView. Even malicious iframes loaded within a trusted page may access the exposed interface: (attack code)
Example Language: JavaScript
<script>
var info = window.userInfoObject.getUserInfo(); </script>sendUserInfo(info); This malicious code within an iframe is able to access the interface object and steal the user's data.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Research Gap
Under-reported and under-studied. This weakness could appear in any technology, language, or framework that allows the programmer to provide a functional interface to external parties, but it is not heavily reported. In 2007, CVE began showing a notable increase in reports of exposed method vulnerabilities in ActiveX applications, as well as IOCTL access to OS-level resources. These weaknesses have been documented for Java applications in various secure programming sources, but there are few reports in CVE, which suggests limited awareness in most parts of the vulnerability research community.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |