CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.15)  
ID

CWE-780: Use of RSA Algorithm without OAEP

Weakness ID: 780
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: VariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product uses the RSA algorithm but does not incorporate Optimal Asymmetric Encryption Padding (OAEP), which might weaken the encryption.
+ Extended Description
Padding schemes are often used with cryptographic algorithms to make the plaintext less predictable and complicate attack efforts. The OAEP scheme is often used with RSA to nullify the impact of predictable common text.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Access Control

Technical Impact: Bypass Protection Mechanism

Without OAEP in RSA encryption, it will take less work for an attacker to decrypt the data or to infer patterns from the ciphertext.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.327Use of a Broken or Risky Cryptographic Algorithm
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1013Encrypt Data
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
ImplementationREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Likelihood Of Exploit
Medium
+ Demonstrative Examples

Example 1

The example below attempts to build an RSA cipher.

(bad code)
Example Language: Java 
public Cipher getRSACipher() {
Cipher rsa = null;
try {
rsa = javax.crypto.Cipher.getInstance("RSA/NONE/NoPadding");
}
catch (java.security.NoSuchAlgorithmException e) {
log("this should never happen", e);
}
catch (javax.crypto.NoSuchPaddingException e) {
log("this should never happen", e);
}
return rsa;
}

While the previous code successfully creates an RSA cipher, the cipher does not use padding. The following code creates an RSA cipher using OAEP.

(good code)
Example Language: Java 
public Cipher getRSACipher() {
Cipher rsa = null;
try {
rsa = javax.crypto.Cipher.getInstance("RSA/ECB/OAEPWithMD5AndMGF1Padding");
}
catch (java.security.NoSuchAlgorithmException e) {
log("this should never happen", e);
}
catch (javax.crypto.NoSuchPaddingException e) {
log("this should never happen", e);
}
return rsa;
}

+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1346OWASP Top Ten 2021 Category A02:2021 - Cryptographic Failures
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1402Comprehensive Categorization: Encryption
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Maintenance

This entry could probably have a new parent related to improper padding, however the role of padding in cryptographic algorithms can vary, such as hiding the length of the plaintext and providing additional random bits for the cipher. In general, cryptographic problems in CWE are not well organized and further research is needed.
+ References
[REF-694] Ronald L. Rivest and Burt Kaliski. "RSA Problem". 2003-12-10. <http://people.csail.mit.edu/rivest/RivestKaliski-RSAProblem.pdf>.
[REF-695] "Optimal Asymmetric Encryption Padding". Wikipedia. 2009-07-08. <https://en.wikipedia.org/wiki/Optimal_asymmetric_encryption_padding>. URL validated: 2023-04-07.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2009-07-08
(CWE 1.5, 2009-07-27)
Fortify Software
Based on information from Fortify Software.
+ Modifications
Modification DateModifierOrganization
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2017-11-08CWE Content TeamMITRE
updated Modes_of_Introduction, References, Relationships
2020-02-24CWE Content TeamMITRE
updated Relationships
2021-10-28CWE Content TeamMITRE
updated Relationships
2023-01-31CWE Content TeamMITRE
updated Description
2023-04-27CWE Content TeamMITRE
updated Detection_Factors, References, Relationships, Time_of_Introduction
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
Page Last Updated: July 16, 2024