CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security Decision (4.16)  
ID

CWE-784: Reliance on Cookies without Validation and Integrity Checking in a Security Decision

Weakness ID: 784
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product uses a protection mechanism that relies on the existence or values of a cookie, but it does not properly ensure that the cookie is valid for the associated user.
+ Extended Description
Attackers can easily modify cookies, within the browser or by implementing the client-side code outside of the browser. Attackers can bypass protection mechanisms such as authorization and authentication by modifying the cookie to contain an expected value.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Access Control

Technical Impact: Bypass Protection Mechanism; Gain Privileges or Assume Identity

It is dangerous to use cookies to set a user's privileges. The cookie can be manipulated to claim a high level of authorization, or to claim that successful authentication has occurred.
+ Potential Mitigations

Phase: Architecture and Design

Avoid using cookie data for a security-related decision.

Phase: Implementation

Perform thorough input validation (i.e.: server side validation) on the cookie data if you're going to use it for a security related decision.

Phase: Architecture and Design

Add integrity checks to detect tampering.

Phase: Architecture and Design

Protect critical cookies from replay attacks, since cross-site scripting or other attacks may allow attackers to steal a strongly-encrypted cookie that also passes integrity checks. This mitigation applies to cookies that should only be valid during a single transaction or session. By enforcing timeouts, you may limit the scope of an attack. As part of your integrity check, use an unpredictable, server-side value that is not exposed to the client.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 565 Reliance on Cookies without Validation and Integrity Checking
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 807 Reliance on Untrusted Inputs in a Security Decision
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1012 Cross Cutting
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Technologies

Class: Web Based (Often Prevalent)

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

The following code excerpt reads a value from a browser cookie to determine the role of the user.

(bad code)
Example Language: Java 
Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {
Cookie c = cookies[i];
if (c.getName().equals("role")) {
userRole = c.getValue();
}
}

Example 2

The following code could be for a medical records application. It performs authentication by checking if a cookie has been set.

(bad code)
Example Language: PHP 
$auth = $_COOKIES['authenticated'];
if (! $auth) {
if (AuthenticateUser($_POST['user'], $_POST['password']) == "success") {
// save the cookie to send out in future responses
setcookie("authenticated", "1", time()+60*60*2);
}
else {
ShowLoginScreen();
die("\n");
}
}
DisplayMedicalHistory($_POST['patient_ID']);

The programmer expects that the AuthenticateUser() check will always be applied, and the "authenticated" cookie will only be set when authentication succeeds. The programmer even diligently specifies a 2-hour expiration for the cookie.

However, the attacker can set the "authenticated" cookie to a non-zero value such as 1. As a result, the $auth variable is 1, and the AuthenticateUser() check is not even performed. The attacker has bypassed the authentication.


Example 3

In the following example, an authentication flag is read from a browser cookie, thus allowing for external control of user state data.

(bad code)
Example Language: Java 
Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) {
Cookie c = cookies[i];
if (c.getName().equals("authenticated") && Boolean.TRUE.equals(c.getValue())) {
authenticated = true;
}
}

+ Observed Examples
Reference Description
Attacker can bypass authentication by setting a cookie to a specific value.
Attacker can bypass authentication and gain admin privileges by setting an "admin" cookie to 1.
Content management system allows admin privileges by setting a "login" cookie to "OK."
e-dating application allows admin privileges by setting the admin cookie to 1.
Web-based email list manager allows attackers to gain admin privileges by setting a login cookie to "admin."
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1354 OWASP Top Ten 2021 Category A08:2021 - Software and Data Integrity Failures
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1403 Comprehensive Categorization: Exposed Resource
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Maintenance

A new parent might need to be defined for this entry. This entry is specific to cookies, which reflects the significant number of vulnerabilities being reported for cookie-based authentication in CVE during 2008 and 2009. However, other types of inputs - such as parameters or headers - could also be used for similar authentication or authorization. Similar issues (under the Research view) include CWE-247 and CWE-472.
+ References
[REF-706] Steve Christey. "Unforgivable Vulnerabilities". 2007-08-02. <http://cve.mitre.org/docs/docs-2007/unforgivable.pdf>.
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 13, "Sensitive Data in Cookies and Fields" Page 435. 2nd Edition. Microsoft Press. 2002-12-04. <https://www.microsoftpressstore.com/store/writing-secure-code-9780735617223>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2009-07-16
(CWE 1.5, 2009-07-27)
CWE Content Team MITRE
+ Modifications
Modification Date Modifier Organization
2009-10-29 CWE Content Team MITRE
updated Relationships
2010-02-16 CWE Content Team MITRE
updated Demonstrative_Examples, References, Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2017-01-19 CWE Content Team MITRE
updated Relationships
2017-11-08 CWE Content Team MITRE
updated Modes_of_Introduction, References, Relationships
2018-03-27 CWE Content Team MITRE
updated References
2020-02-24 CWE Content Team MITRE
updated Applicable_Platforms, Relationships
2021-10-28 CWE Content Team MITRE
updated Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2023-04-27 CWE Content Team MITRE
updated Modes_of_Introduction, Relationships, Time_of_Introduction
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
Page Last Updated: November 19, 2024