CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-81: Improper Neutralization of Script in an Error Message Web Page (4.16)  
ID

CWE-81: Improper Neutralization of Script in an Error Message Web Page

Weakness ID: 81
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product receives input from an upstream component, but it does not neutralize or incorrectly neutralizes special characters that could be interpreted as web-scripting elements when they are sent to an error page.
+ Extended Description

Error pages may include customized 403 Forbidden or 404 Not Found pages.

When an attacker can trigger an error that contains script syntax within the attacker's input, then cross-site scripting attacks may be possible.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Confidentiality
Integrity
Availability

Technical Impact: Read Application Data; Execute Unauthorized Code or Commands

+ Potential Mitigations

Phase: Implementation

Do not write user-controlled input to error pages.

Phase: Implementation

Carefully check each input parameter against a rigorous positive specification (allowlist) defining the specific characters and format allowed. All input should be neutralized, not just parameters that the user is supposed to specify, but all data in the request, including hidden fields, cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often encounter data from the request that is reflected by the application server or the application that the development team did not anticipate. Also, a field that is not currently reflected may be used by a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Phase: Implementation

Strategy: Output Encoding

Use and specify an output encoding that can be handled by the downstream component that is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8. When an encoding is not specified, a downstream component may choose a different encoding, either by assuming a default encoding or automatically inferring which encoding is being used, which can be erroneous. When the encodings are inconsistent, the downstream component might treat some character or byte sequences as special, even if they are not special in the original encoding. Attackers might then be able to exploit this discrepancy and conduct injection attacks; they even might be able to bypass protection mechanisms that assume the original encoding is also being used by the downstream component.

The problem of inconsistent output encodings often arises in web pages. If an encoding is not specified in an HTTP header, web browsers often guess about which encoding is being used. This can open up the browser to subtle XSS attacks.

Phase: Implementation

With Struts, write all data from form beans with the bean's filter attribute set to true.

Phase: Implementation

Strategy: Attack Surface Reduction

To help mitigate XSS attacks against the user's session cookie, set the session cookie to be HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible to malicious client-side scripts that use document.cookie. This is not a complete solution, since HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other powerful browser technologies provide read access to HTTP headers, including the Set-Cookie header in which the HttpOnly flag is set.

Effectiveness: Defense in Depth

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
CanAlsoBe Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 209 Generation of Error Message Containing Sensitive Information
CanAlsoBe Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 390 Detection of Error Condition Without Action
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
Operation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Observed Examples
Reference Description
XSS in default error page from Host: header.
XSS in error message.
XSS in error page from targeted parameter.
+ Weakness Ordinalities
Ordinality Description
Resultant
(where the weakness is typically related to the presence of some other weaknesses)
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 990 SFP Secondary Cluster: Tainted Input to Command
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1409 Comprehensive Categorization: Injection
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER XSS in error pages
Software Fault Patterns SFP24 Tainted input to command
+ References
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 11: Failure to Handle Errors Correctly." Page 183. McGraw-Hill. 2010.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Description, Relationships, Taxonomy_Mappings, Weakness_Ordinalities
2008-10-14 CWE Content Team MITRE
updated Description
2009-05-27 CWE Content Team MITRE
updated Description, Name
2010-04-05 CWE Content Team MITRE
updated Related_Attack_Patterns
2010-06-21 CWE Content Team MITRE
updated Description, Name, Potential_Mitigations
2011-03-29 CWE Content Team MITRE
updated Potential_Mitigations
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2012-05-11 CWE Content Team MITRE
updated References, Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2013-02-21 CWE Content Team MITRE
updated Potential_Mitigations
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-05-03 CWE Content Team MITRE
updated Potential_Mitigations
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Causal_Nature
2020-02-24 CWE Content Team MITRE
updated Description, Relationships
2020-06-25 CWE Content Team MITRE
updated Potential_Mitigations
2023-01-31 CWE Content Team MITRE
updated Description
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
+ Previous Entry Names
Change Date Previous Entry Name
2008-04-11 XSS in Error Pages
2009-05-27 Failure to Sanitize Directives in an Error Message Web Page
2010-06-21 Improper Sanitization of Script in an Error Message Web Page
Page Last Updated: November 19, 2024