CWE-1232: Improper Lock Behavior After Power State Transition
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterRegister lock bit protection disables changes to system configuration once the bit is set. Some of the protected registers or lock bits become programmable after power state transitions (e.g., Entry and wake from low power sleep modes) causing the system configuration to be changeable.
Devices may allow device configuration controls which need to be programmed after device power reset via a trusted firmware or software module (commonly set by BIOS/bootloader) and then locked from any further modification. This action is commonly implemented using a programmable lock bit, which, when set, disables writes to a protected set of registers or address regions. After a power state transition, the lock bit is set to unlocked. Some common weaknesses that can exist in such a protection scheme are that the lock gets cleared, the values of the protected registers get reset, or the lock become programmable. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1
Consider the memory configuration settings of a system that uses DDR3 DRAM memory. Protecting the DRAM memory configuration from modification by software is required to ensure that system memory access control protections cannot be bypassed. This can be done by using lock bit protection that locks all of the memory configuration registers. The memory configuration lock can be set by the BIOS during the boot process. If such a system also supports a rapid power on mode like hibernate, the DRAM data must be saved to a disk before power is removed and restored back to the DRAM once the system powers back up and before the OS resumes operation after returning from hibernate. To support the hibernate transition back to the operating state, the DRAM memory configuration must be reprogrammed even though it was locked previously. As the hibernate resume does a partial reboot, the memory configuration could be altered before the memory lock is set. Functionally the hibernate resume flow requires a bypass of the lock-based protection. The memory configuration must be securely stored and restored by trusted system firmware. Lock settings and system configuration must be restored to the same state it was in before the device entered into the hibernate mode. Example 2
The example code below is taken from the register lock module (reglk_wrapper) of the Hack@DAC'21 buggy OpenPiton System-on-Chip (SoC). Upon powering on, most of the silicon registers are initially unlocked. However, critical resources must be configured and locked by setting the lock bit in a register. In this module, a set of six memory-mapped I/O registers (reglk_mem) is defined and maintained to control the access control of registers inside different peripherals in the SoC [REF-1432]. Each bit represents a register's read/write ability or sets of registers inside a peripheral. Setting improper lock values after system power transition or system rest would make a temporary window for the attackers to read unauthorized data, e.g., secret keys from the crypto engine, and write illegitimate data to critical registers, e.g., framework data. Furthermore, improper register lock values can also result in DoS attacks. In this faulty implementation, the locks are disabled, i.e., initialized to zero, at reset instead of setting them to their appropriate values [REF-1433]. Improperly initialized locks might allow unauthorized access to sensitive registers, compromising the system's security. (bad code)
Example Language: Verilog
module reglk_wrapper #(
...
always @(posedge clk_i)
begin
if(~(rst_ni && ~jtag_unlock && ~rst_9))
begin
...
for (j=0; j < 6; j=j+1) begin
end
reglk_mem[j] <= 'h0;
endTo resolve this issue, it is crucial to ensure that register locks are correctly initialized during the reset phase of the SoC. Correct initialization values should be established to maintain the system's integrity, security, and predictable behavior and allow for proper control of peripherals. The specifics of initializing register locks and their values depend on the SoC's design and the system's requirements; for example, access to all registers through the user privilege level should be locked at reset. To address the problem depicted in the bad code example [REF-1433], the default value for "reglk_mem" should be set to 32'hFFFFFFFF. This ensures that access to protected data is restricted during power state transition or after reset until the system state transition is complete and security procedures have properly configured the register locks. (good code)
Example Language: Verilog
module reglk_wrapper #(
...
always @(posedge clk_i)
begin
if(~(rst_ni && ~jtag_unlock && ~rst_9))
begin
...
for (j=0; j < 6; j=j+1) begin
end
reglk_mem[j] <= 'hffffffff;
end
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |