CWE

Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.2)  
ID

CWE-1234: Hardware Internal or Debug Modes Allow Override of Locks

Weakness ID: 1234
Abstraction: Base
Structure: Simple
Status: Incomplete
Presentation Filter:
+ Description
System configuration protection may be bypassed during debug mode.
+ Extended Description

Device configuration controls are commonly programmed after a device power reset by a trusted firmware or software module (e.g., BIOS/bootloader) and then locked from any further modification. This is commonly implemented using a trusted lock bit, which when set, disables writes to a protected set of registers or address regions. The lock protection is intended to prevent modification of certain system configuration (e.g., memory/memory protection unit configuration). If debug features supported by hardware or internal modes/system states are supported in the hardware design, modification of the lock protection may be allowed allowing access and modification of configuration information.

+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.667Improper Locking
+ Relevant to the view "Hardware Design" (CWE-1194)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1199General Circuit and Logic Design Concerns
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1207Debug and Test Problems
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and Design
Implementation
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Language-Independent (Undetermined Prevalence)

Operating Systems

Class: OS-Independent (Undetermined Prevalence)

Architectures

Class: Architecture-Independent (Undetermined Prevalence)

Technologies

Class: Technology-Independent (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Access Control

Technical Impact: Bypass Protection Mechanism

Bypass of lock bit allows access and modification of system configuration even when the lock bit is set.
High
+ Demonstrative Examples

Example 1

For example, consider the example Locked_override_register example. This register module supports a lock mode that blocks any writes after lock is set to 1.
However, it also allows override of the lock protection when scan_mode or debug_unlocked modes are active.

(bad code)
Example Language: Verilog 

module Locked_register_example

(

input [15:0] Data_in,

input Clk,

input resetn,

input write,

input Lock,

input scan_mode,

input debug_unlocked,

output reg [15:0] Data_out

);

reg lock_status;

always @(posedge Clk or negedge resetn)

if (~resetn) // Register is reset resetn

begin

lock_status <= 1'b0;

end

else if (Lock)

begin

lock_status <= 1'b1;

end

else if (~Lock)

begin

lock_status <= lock_status

end

always @(posedge Clk or negedge resetn)

if (~resetn) // Register is reset resetn

begin

Data_out <= 16'h0000;

end

else if (write & (~lock_status | scan_mode | debug_unlocked) ) // Register protected by Lock bit input, overrides supported for scan_mode & debug_unlocked

begin

Data_out <= Data_in;

end

else if (~write)

begin

Data_out <= Data_out;

end

endmodule

If either the scan_mode or the debug_unlocked modes can be triggered by software, then the lock protection may be bypassed.

(good code)
 
Either remove the debug and scan mode overrides or protect enabling of these modes so that only trusted and authorized users may enable these modes.
+ Potential Mitigations

Phases: Architecture and Design; Implementation; Testing

  • Security Lock bit protections should be reviewed for any bypass/override modes supported.
  • Any supported override modes either should be removed or protected using authenticated debug modes.
  • Security lock programming flow and lock properties should be tested in pre-silicon and post-silicon testing.

Effectiveness: High

+ Content History
+ Submissions
Submission DateSubmitterOrganization
2020-01-15Arun Kanuparthi, Hareesh Khattri, Parbati Kumar Manna, Narasimha Kumar V MangipudiiIntel Corporation
+ Modifications
Modification DateModifierOrganization
2020-08-20CWE Content TeamMITRE
updated Common_Consequences, Demonstrative_Examples, Description, Modes_of_Introduction, Potential_Mitigations, Related_Attack_Patterns
More information is available — Please select a different filter.
Page Last Updated: August 20, 2020