CWE

Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

CWE Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (4.1)  
ID

CWE-1288: Improper Validation of Consistency within Input

Weakness ID: 1288
Abstraction: Base
Structure: Simple
Status: Incomplete
Presentation Filter:
+ Description
The product receives a complex input with multiple elements or fields that must be consistent with each other, but it does not validate or incorrectly validates that the input is actually consistent.
+ Extended Description

Some input data can be structured with multiple elements or fields that must be consistent with each other, e.g. a number-of-items field that is followed by the expected number of elements. When such complex inputs are inconsistent, attackers could trigger unexpected errors, cause incorrect actions to take place, or exploit latent vulnerabilities.

+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.20Improper Input Validation
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Implementation
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Language-Independent (Often Prevalent)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Other

Technical Impact: Varies by Context

+ Observed Examples
ReferenceDescription
product does not validate that the start block appears before the end block
size field that is inconsistent with packet size leads to buffer over-read
system crash with offset value that is inconsistent with packet size
+ Potential Mitigations

Phase: Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a list of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs. This is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, denylists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

Effectiveness: High

+ Notes

Maintenance

This entry is still under development and will continue to see updates and content improvements.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2020-06-24CWE Content TeamMITRE
More information is available — Please select a different filter.
Page Last Updated: June 25, 2020