CWE-307: Improper Restriction of Excessive Authentication Attempts
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom Filter![]()
![]() ![]()
![]()
![]()
![]()
![]()
![]()
Example 1 In January 2009, an attacker was able to gain administrator access to a Twitter server because the server did not restrict the number of login attempts [REF-236]. The attacker targeted a member of Twitter's support team and was able to successfully guess the member's password using a brute force attack by guessing a large number of common words. After gaining access as the member of the support staff, the attacker used the administrator panel to gain access to 33 accounts that belonged to celebrities and politicians. Ultimately, fake Twitter messages were sent that appeared to come from the compromised accounts.
Example 2 The following code, extracted from a servlet's doPost() method, performs an authentication lookup every time the servlet is invoked. (bad code)
Example Language: Java
String username = request.getParameter("username");
String password = request.getParameter("password"); int authResult = authenticateUser(username, password); However, the software makes no attempt to restrict excessive authentication attempts. Example 3 This code attempts to limit the number of login attempts by causing the process to sleep before completing the authentication. (bad code)
Example Language: PHP
$username = $_POST['username'];
$password = $_POST['password']; sleep(2000); $isAuthenticated = authenticateUser($username, $password); However, there is no limit on parallel connections, so this does not increase the amount of time an attacker needs to complete an attack. Example 4 In the following C/C++ example the validateUser method opens a socket connection, reads a username and password from the socket and attempts to authenticate the username and password. (bad code)
Example Language: C
int validateUser(char *host, int port)
{ int socket = openSocketConnection(host, port);
if (socket < 0) { printf("Unable to open socket connection"); }return(FAIL); int isValidUser = 0; char username[USERNAME_SIZE]; char password[PASSWORD_SIZE]; while (isValidUser == 0) { if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) { }isValidUser = AuthenticateUser(username, password); }return(SUCCESS); The validateUser method will continuously check for a valid username and password without any restriction on the number of authentication attempts made. The method should limit the number of authentication attempts made to prevent brute force attacks as in the following example code. (good code)
Example Language: C
int validateUser(char *host, int port)
{ ...
int count = 0; while ((isValidUser == 0) && (count < MAX_ATTEMPTS)) { if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) { }isValidUser = AuthenticateUser(username, password); }count++; if (isValidUser) { return(SUCCESS); }else { return(FAIL); }Example 5 Consider this example from a real-world attack against the iPhone [REF-1218]. An attacker can use brute force methods; each time there is a failed guess, the attacker quickly cuts the power before the failed entry is recorded, effectively bypassing the intended limit on the number of failed authentication attempts. Note that this attack requires removal of the cell phone battery and connecting directly to the phone's power source, and the brute force attack is still time-consuming. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.
![]()
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |