CWE

Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  
ID

CWE-307: Improper Restriction of Excessive Authentication Attempts

Weakness ID: 307
Abstraction: Base
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The software does not implement sufficient measures to prevent multiple failed authentication attempts within in a short time frame, making it more susceptible to brute force attacks.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass799Improper Control of Interaction Frequency
ChildOfClassClass287Improper Authentication
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory1010Authenticate Actors
+ Relevant to the view "Development Concepts" (CWE-699)
NatureTypeIDName
ChildOfClassClass287Improper Authentication
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and DesignCOMMISSION: This weakness refers to an incorrect design related to an architectural security tactic.
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

(Language-Independent classes): (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Access Control

Technical Impact: Bypass Protection Mechanism

An attacker could perform an arbitrary number of authentication attempts using different passwords, and eventually gain access to the targeted account.
+ Demonstrative Examples

Example 1

In January 2009, an attacker was able to gain administrator access to a Twitter server because the server did not restrict the number of login attempts. The attacker targeted a member of Twitter's support team and was able to successfully guess the member's password using a brute force attack by guessing a large number of common words. Once the attacker gained access as the member of the support staff, he used the administrator panel to gain access to 33 accounts that belonged to celebrities and politicians. Ultimately, fake Twitter messages were sent that appeared to come from the compromised accounts.

References

Example 2

The following code, extracted from a servlet's doPost() method, performs an authentication lookup every time the servlet is invoked.

(bad)
Example Language: Java 
String username = request.getParameter("username");
String password = request.getParameter("password");

int authResult = authenticateUser(username, password);

However, the software makes no attempt to restrict excessive authentication attempts.

Example 3

This code attempts to limit the number of login attempts by causing the process to sleep before completing the authentication.

(bad)
Example Language: PHP 
$username = $_POST['username'];
$password = $_POST['password'];
sleep(2000);
$isAuthenticated = authenticateUser($username, $password);

However, there is no limit on parallel connections, so this does not increase the amount of time an attacker needs to complete an attack.

Example 4

In the following C/C++ example the validateUser method opens a socket connection, reads a username and password from the socket and attempts to authenticate the username and password.

(bad)
Example Language:
int validateUser(char *host, int port)
{
int socket = openSocketConnection(host, port);
if (socket < 0) {
printf("Unable to open socket connection");
return(FAIL);

}

int isValidUser = 0;
char username[USERNAME_SIZE];
char password[PASSWORD_SIZE];

while (isValidUser == 0) {
if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) {
isValidUser = AuthenticateUser(username, password);

}

}

}
return(SUCCESS);

}

The validateUser method will continuously check for a valid username and password without any restriction on the number of authentication attempts made. The method should limit the number of authentication attempts made to prevent brute force attacks as in the following example code.

(good)
Example Language:
int validateUser(char *host, int port)
{
...

int count = 0;
while ((isValidUser == 0) && (count < MAX_ATTEMPTS)) {
if (getNextMessage(socket, username, USERNAME_SIZE) > 0) {
if (getNextMessage(socket, password, PASSWORD_SIZE) > 0) {
isValidUser = AuthenticateUser(username, password);

}

}
count++;

}
if (isValidUser) {
return(SUCCESS);

}
else {
return(FAIL);

}

}
+ Observed Examples
ReferenceDescription
Product does not disconnect or timeout after multiple failed logins.
Product does not disconnect or timeout after multiple failed logins.
Product does not disconnect or timeout after multiple failed logins.
Product does not disconnect or timeout after multiple failed logins.
Product does not disconnect or timeout after multiple failed logins.
User accounts not disabled when they exceed a threshold; possibly a resultant problem.
+ Potential Mitigations

Phase: Architecture and Design

Common protection mechanisms include: Disconnecting the user after a small number of failed attempts Implementing a timeout Locking out a targeted account Requiring a computational task on the user's part.

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid. Consider using libraries with authentication capabilities such as OpenSSL or the ESAPI Authenticator. [REF-45]
+ Detection Methods

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Web Application Scanner
  • Web Services Scanner
  • Database Scanners
Cost effective for partial coverage:
  • Host-based Vulnerability Scanners – Examine configuration for flaws, verifying that audit mechanisms work, ensure host configuration meets certain predefined criteria

Effectiveness: High

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Fuzz Tester
  • Framework-based Fuzzer
Cost effective for partial coverage:
  • Forced Path Execution

Effectiveness: High

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Focused Manual Spotcheck - Focused manual analysis of source
  • Manual Source Code Review (not inspections)

Effectiveness: High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Source code Weakness Analyzer
  • Context-configured Source Code Weakness Analyzer

Effectiveness: SOAR Partial

Automated Static Analysis

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Configuration Checker

Effectiveness: SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Formal Methods / Correct-By-Construction
Cost effective for partial coverage:
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness: High

+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERAUTHENT.MULTFAILMultiple Failed Authentication Attempts not Prevented
Software Fault PatternsSFP34Unrestricted authentication
+ References
[REF-45] OWASP. "OWASP Enterprise Security API (ESAPI) Project". <http://www.owasp.org/index.php/ESAPI>.
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
PLOVER
Modifications
Modification DateModifierOrganizationSource
2008-07-01Sean EidemillerCigital
added/updated demonstrative examples
2008-09-08CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2009-03-10CWE Content TeamMITRE
updated Relationships
2009-07-27CWE Content TeamMITRE
updated Observed_Examples
2009-12-28CWE Content TeamMITRE
updated Applicable_Platforms, Demonstrative_Examples, Potential_Mitigations
2010-02-16CWE Content TeamMITRE
updated Demonstrative_Examples, Name, Potential_Mitigations, Relationships, Taxonomy_Mappings
2010-04-05CWE Content TeamMITRE
updated Demonstrative_Examples
2011-03-29CWE Content TeamMITRE
updated Demonstrative_Examples
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2011-06-27CWE Content TeamMITRE
updated Common_Consequences, Related_Attack_Patterns, Relationships
2011-09-13CWE Content TeamMITRE
updated Potential_Mitigations, References, Relationships
2012-05-11CWE Content TeamMITRE
updated Relationships
2014-07-30CWE Content TeamMITRE
updated Detection_Factors, Relationships, Taxonomy_Mappings
2017-11-08CWE Content TeamMITRE
updated Demonstrative_Examples, Modes_of_Introduction, Relationships
Previous Entry Names
Change DatePrevious Entry Name
2008-04-11Multiple Failed Authentication Attempts not Prevented
2010-02-16Failure to Restrict Excessive Authentication Attempts

More information is available — Please select a different filter.
Page Last Updated: November 14, 2017