CWE

Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  
ID

CWE-287: Improper Authentication

Weakness ID: 287
Abstraction: Class
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
When an actor claims to have a given identity, the software does not prove or insufficiently proves that the claim is correct.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass284Improper Access Control
ParentOfVariantVariant261Weak Cryptography for Passwords
ParentOfVariantVariant262Not Using Password Aging
ParentOfBaseBase263Password Aging with Long Expiration
ParentOfBaseBase288Authentication Bypass Using an Alternate Path or Channel
ParentOfVariantVariant289Authentication Bypass by Alternate Name
ParentOfBaseBase290Authentication Bypass by Spoofing
ParentOfBaseBase294Authentication Bypass by Capture-replay
ParentOfVariantVariant301Reflection Attack in an Authentication Protocol
ParentOfVariantVariant302Authentication Bypass by Assumed-Immutable Data
ParentOfBaseBase303Incorrect Implementation of Authentication Algorithm
ParentOfBaseBase305Authentication Bypass by Primary Weakness
ParentOfVariantVariant306Missing Authentication for Critical Function
ParentOfBaseBase307Improper Restriction of Excessive Authentication Attempts
ParentOfBaseBase308Use of Single-factor Authentication
ParentOfBaseBase309Use of Password System for Primary Authentication
ParentOfCompositeComposite384Session Fixation
ParentOfBaseBase521Weak Password Requirements
ParentOfBaseBase522Insufficiently Protected Credentials
ParentOfVariantVariant593Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created
ParentOfBaseBase603Use of Client-Side Authentication
ParentOfVariantVariant620Unverified Password Change
ParentOfBaseBase640Weak Password Recovery Mechanism for Forgotten Password
ParentOfBaseBase645Overly Restrictive Account Lockout Mechanism
ParentOfBaseBase798Use of Hard-coded Credentials
ParentOfBaseBase804Guessable CAPTCHA
ParentOfBaseBase836Use of Password Hash Instead of Password for Authentication
CanFollowBaseBase613Insufficient Session Expiration
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
NatureTypeIDName
ChildOfClassClass284Improper Access Control
ParentOfVariantVariant306Missing Authentication for Critical Function
ParentOfCompositeComposite384Session Fixation
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory1010Authenticate Actors
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and Design
ImplementationREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

(Language-Independent classes): (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Integrity
Confidentiality
Availability
Access Control

Technical Impact: Read Application Data; Gain Privileges or Assume Identity; Execute Unauthorized Code or Commands

This weakness can lead to the exposure of resources or functionality to unintended actors, possibly providing attackers with sensitive information or even execute arbitrary code.
+ Alternate Terms
authentification:An alternate term is "authentification", which appears to be most commonly used by people from non-English-speaking countries.
AuthC:"AuthC" is typically used as an abbreviation of "authentication" within the web application security community. It is also distinct from "AuthZ," which is an abbreviation of "authorization." The use of "Auth" as an abbreviation is discouraged, since it could be used for either authentication or authorization.
+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

The following code intends to ensure that the user is already logged in. If not, the code performs authentication with the user-provided username and password. If successful, it sets the loggedin and user cookies to "remember" that the user has already logged in. Finally, the code performs administrator tasks if the logged-in user has the "Administrator" username, as recorded in the user cookie.

(bad)
Example Language: Perl 
my $q = new CGI;

if ($q->cookie('loggedin') ne "true") {
if (! AuthenticateUser($q->param('username'), $q->param('password'))) {
ExitError("Error: you need to log in first");

}
else {
# Set loggedin and user cookies.
$q->cookie(
-name => 'loggedin',
-value => 'true'
);

$q->cookie(
-name => 'user',
-value => $q->param('username')
);

}

}

if ($q->cookie('user') eq "Administrator") {
DoAdministratorTasks();

}

Unfortunately, this code can be bypassed. The attacker can set the cookies independently so that the code does not check the username and password. The attacker could do this with an HTTP request containing headers such as:

(attack)
 
GET /cgi-bin/vulnerable.cgi HTTP/1.1
Cookie: user=Administrator
Cookie: loggedin=true

[body of request]

By setting the loggedin cookie to "true", the attacker bypasses the entire authentication check. By using the "Administrator" value in the user cookie, the attacker also gains privileges to administer the software.

Example 2

In January 2009, an attacker was able to gain administrator access to a Twitter server because the server did not restrict the number of login attempts. The attacker targeted a member of Twitter's support team and was able to successfully guess the member's password using a brute force with a large number of common words. Once the attacker gained access as the member of the support staff, he used the administrator panel to gain access to 33 accounts that belonged to celebrities and politicians. Ultimately, fake Twitter messages were sent that appeared to come from the compromised accounts.

References
+ Observed Examples
ReferenceDescription
login script for guestbook allows bypassing authentication by setting a "login_ok" parameter to 1.
admin script allows authentication bypass by setting a cookie value to "LOGGEDIN".
VOIP product allows authentication bypass using 127.0.0.1 in the Host header.
product uses default "Allow" action, instead of default deny, leading to authentication bypass.
chain: redirect without exit (CWE-698) leads to resultant authentication bypass.
product does not restrict access to a listening port for a critical service, allowing authentication to be bypassed.
product does not properly implement a security-related configuration setting, allowing authentication bypass.
authentication routine returns "nil" instead of "false" in some situations, allowing authentication bypass using an invalid username.
authentication update script does not properly handle when admin does not select any authentication modules, allowing authentication bypass.
use of LDAP authentication with anonymous binds causes empty password to result in successful authentication
product authentication succeeds if user-provided MD5 hash matches the hash in its database; this can be subjected to replay attacks.
chain: product generates predictable MD5 hashes using a constant value combined with username, allowing authentication bypass.
+ Potential Mitigations

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use an authentication framework or library such as the OWASP ESAPI Authentication feature.
+ Detection Methods

Automated Static Analysis

Automated static analysis is useful for detecting certain types of authentication. A tool may be able to analyze related configuration files, such as .htaccess in Apache web servers, or detect the usage of commonly-used authentication libraries.

Generally, automated static analysis tools have difficulty detecting custom authentication schemes. In addition, the software's design may include some functionality that is accessible to any user and does not require an established identity; an automated technique that detects the absence of authentication may report false positives.

Effectiveness: Limited

Manual Static Analysis

This weakness can be detected using tools and techniques that require manual (human) analysis, such as penetration testing, threat modeling, and interactive tools that allow the tester to record and modify an active session.

Manual static analysis is useful for evaluating the correctness of custom authentication mechanisms.

Effectiveness: High

These may be more effective than strictly automated techniques. This is especially the case with weaknesses that are related to design and business rules.

Manual Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Binary / Bytecode disassembler - then use manual analysis for vulnerabilities & anomalies

Effectiveness: SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Web Application Scanner
  • Web Services Scanner
  • Database Scanners

Effectiveness: SOAR Partial

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Fuzz Tester
  • Framework-based Fuzzer

Effectiveness: SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Manual Source Code Review (not inspections)

Effectiveness: SOAR Partial

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Source code Weakness Analyzer
  • Context-configured Source Code Weakness Analyzer

Effectiveness: SOAR Partial

Automated Static Analysis

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Configuration Checker

Effectiveness: SOAR Partial

Architecture or Design Review

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)
  • Formal Methods / Correct-By-Construction

Effectiveness: High

+ Functional Areas
  • Authentication
+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
+ Notes

Relationship

This can be resultant from SQL injection vulnerabilities and other issues.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERAuthentication Error
OWASP Top Ten 2007A7CWE More SpecificBroken Authentication and Session Management
OWASP Top Ten 2004A3CWE More SpecificBroken Authentication and Session Management
WASC1Insufficient Authentication
+ References
[REF-237] OWASP. "Top 10 2007-Broken Authentication and Session Management". 2007. <http://www.owasp.org/index.php/Top_10_2007-A7>.
[REF-238] OWASP. "Guide to Authentication". <http://www.owasp.org/index.php/Guide_to_Authentication>.
[REF-239] Microsoft. "Authentication". <http://msdn.microsoft.com/en-us/library/aa374735(VS.85).aspx>.
[REF-7] Michael Howard and David LeBlanc. "Writing Secure Code". Chapter 4, "Authentication" Page 109. 2nd Edition. Microsoft Press. 2002-12-04. <https://www.microsoft.com/mspress/books/toc/5957.aspx>.
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
PLOVER
Modifications
Modification DateModifierOrganizationSource
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-08-15Veracode
Suggested OWASP Top Ten 2004 mapping
2008-09-08CWE Content TeamMITRE
updated Alternate_Terms, Common_Consequences, Relationships, Relationship_Notes, Taxonomy_Mappings
2008-10-14CWE Content TeamMITRE
updated Relationships
2009-01-12CWE Content TeamMITRE
updated Name
2009-05-27CWE Content TeamMITRE
updated Description, Related_Attack_Patterns
2009-07-27CWE Content TeamMITRE
updated Relationships
2009-10-29CWE Content TeamMITRE
updated Common_Consequences, Observed_Examples
2009-12-28CWE Content TeamMITRE
updated Applicable_Platforms, Common_Consequences, Demonstrative_Examples, Detection_Factors, Likelihood_of_Exploit, References
2010-02-16CWE Content TeamMITRE
updated Alternate_Terms, Detection_Factors, Potential_Mitigations, References, Relationships, Taxonomy_Mappings
2010-06-21CWE Content TeamMITRE
updated Relationships
2011-03-29CWE Content TeamMITRE
updated Relationships
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Relationships
2013-07-17CWE Content TeamMITRE
updated Relationships
2014-02-18CWE Content TeamMITRE
updated Relationships
2014-06-23CWE Content TeamMITRE
updated Relationships
2014-07-30CWE Content TeamMITRE
updated Detection_Factors, Relationships
2015-12-07CWE Content TeamMITRE
updated Relationships
2017-01-19CWE Content TeamMITRE
updated Relationships
2017-05-03CWE Content TeamMITRE
updated Related_Attack_Patterns, Relationships
2017-11-08CWE Content TeamMITRE
updated Demonstrative_Examples, Likelihood_of_Exploit, Modes_of_Introduction, References, Relationships
Previous Entry Names
Change DatePrevious Entry Name
2008-04-11Authentication Issues
2009-01-12Insufficient Authentication

More information is available — Please select a different filter.
Page Last Updated: November 14, 2017