| CWE-639: Authorization Bypass Through User-Controlled Key
 View customized information: For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
	
	
		
        	For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
	
	
		
        	For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record).  Example: tool developers, security researchers.
	
	
			
        	For users who wish to see all available information for the CWE/CAPEC entry.
	
	
		
        	For users who want to customize what details are displayed. 
    ×
     Edit Custom FilterThe system's authorization functionality does not prevent one user from gaining access to another user's data or record by modifying the key value identifying the data. Retrieval of a user record occurs in the system based on some key value that is under user control. The key would typically identify a user-related record stored in the system and would be used to lookup that record for presentation to the user. It is likely that an attacker would have to be an authenticated user in the system. However, the authorization process would not properly check the data access operation to ensure that the authenticated user performing the operation has sufficient entitlements to perform the requested data access, hence bypassing any other authorization checks present in the system. For example, attackers can look at places where user specific data is retrieved (e.g. search screens) and determine whether the key for the item being looked up is controllable externally. The key may be a hidden field in the HTML form field, might be passed as a URL parameter or as an unencrypted cookie variable, then in each of these cases it will be possible to tamper with the key value. One manifestation of this weakness is when a system uses sequential or otherwise easily-guessable session IDs that would allow one user to easily switch to another user's session and read/modify their data. 
  This table specifies different individual consequences
                        associated with the weakness. The Scope identifies the application security area that is
                        violated, while the Impact describes the negative technical impact that arises if an
                        adversary succeeds in exploiting this weakness. The Likelihood provides information about
                        how likely the specific consequence is expected to be seen relative to the other
                        consequences in the list. For example, there may be high likelihood that a weakness will be
                        exploited to achieve a certain impact, but a low likelihood that it will be exploited to
                        achieve a different impact. 
 
  This table shows the weaknesses and high level categories that are related to this
                            weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
                            similar items that may exist at higher and lower levels of abstraction. In addition,
                            relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
                            may want to explore.  Relevant to the view "Research Concepts" (View-1000) 
  Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (View-1003) 
  Relevant to the view "Architectural Concepts" (View-1008) 
  Relevant to the view "CISQ Data Protection Measures" (View-1340) 
  The different Modes of Introduction provide information
                        about how and when this
                        weakness may be introduced. The Phase identifies a point in the life cycle at which
                        introduction
                        may occur, while the Note provides a typical scenario related to introduction during the
                        given
                        phase. 
  This listing shows possible areas for which the given
                        weakness could appear. These
                        may be for specific named Languages, Operating Systems, Architectures, Paradigms,
                        Technologies,
                        or a class of such platforms. The platform is listed along with how frequently the given
                        weakness appears for that instance. 
 Example 1 The following code uses a parameterized statement, which escapes metacharacters and prevents SQL injection vulnerabilities, to construct and execute a SQL query that searches for an invoice matching the specified identifier [1]. The identifier is selected from a list of all invoices associated with the current authenticated user. (bad code) 
                                    
                                    Example Language: C# 
                                    
                                 ... conn = new SqlConnection(_ConnectionString); conn.Open(); int16 id = System.Convert.ToInt16(invoiceID.Text); SqlCommand query = new SqlCommand( "SELECT * FROM invoices WHERE id = @id", conn); query.Parameters.AddWithValue("@id", id); SqlDataReader objReader = objCommand.ExecuteReader(); ... The problem is that the developer has not considered all of the possible values of id. Although the interface generates a list of invoice identifiers that belong to the current user, an attacker can bypass this interface to request any desired invoice. Because the code in this example does not check to ensure that the user has permission to access the requested invoice, it will display any invoice, even if it does not belong to the current user. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry. 
 
  This MemberOf Relationships table shows additional CWE Categories and Views that
                                reference this weakness as a member. This information is often useful in understanding where a
                                weakness fits within the context of external information sources. 
 
 More information is available — Please edit the custom filter or select a different filter. | 
| Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. | ||
 
	                