CWE

Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  
ID

CWE-786: Access of Memory Location Before Start of Buffer

Weakness ID: 786
Abstraction: Base
Structure: Simple
Status: Incomplete
Presentation Filter:
+ Description
The software reads or writes to a buffer using an index or pointer that references a memory location prior to the beginning of the buffer.
+ Extended Description
This typically occurs when a pointer or its index is decremented to a position before the buffer, when pointer arithmetic results in a position before the beginning of the valid memory location, or when a negative index is used.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
+ Relevant to the view "Development Concepts" (CWE-699)
+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Confidentiality

Technical Impact: Read Memory

For an out-of-bounds read, the attacker may have access to sensitive information. If the sensitive information contains system details, such as the current buffers position in memory, this knowledge can be used to craft further attacks, possibly with more severe consequences.
Integrity
Availability

Technical Impact: Modify Memory; DoS: Crash, Exit, or Restart

Out of bounds memory access will very likely result in the corruption of relevant memory, and perhaps instructions, possibly leading to a crash.
Integrity

Technical Impact: Modify Memory; Execute Unauthorized Code or Commands

If the corrupted memory can be effectively controlled, it may be possible to execute arbitrary code. If the corrupted memory is data rather than instructions, the system will continue to function with improper changes, possibly in violation of an implicit or explicit policy.
+ Demonstrative Examples

Example 1

In the following C/C++ example, a utility function is used to trim trailing whitespace from a character string. The function copies the input string to a local character string and uses a while statement to remove the trailing whitespace by moving backward through the string and overwriting whitespace with a NUL character.

(bad code)
Example Language:
char* trimTrailingWhitespace(char *strMessage, int length) {
char *retMessage;
char *message = malloc(sizeof(char)*(length+1));
// copy input string to a temporary string

char message[length+1];
int index;
for (index = 0; index < length; index++) {
message[index] = strMessage[index];

}
message[index] = '\0';
// trim trailing whitespace

int len = index-1;
while (isspace(message[len])) {
message[len] = '\0';
len--;

}
// return string without trailing whitespace

retMessage = message;
return retMessage;

}

However, this function can cause a buffer underwrite if the input character string contains all whitespace. On some systems the while statement will move backwards past the beginning of a character string and will call the isspace() function on an address outside of the bounds of the local buffer.

Example 2

The following example asks a user for an offset into an array to select an item.

(bad code)
Example Language:

int main (int argc, char **argv) {
char *items[] = {"boat", "car", "truck", "train"};
int index = GetUntrustedOffset();
printf("You selected %s\n", items[index-1]);

}

The programmer allows the user to specify which element in the list to select, however an attacker can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).

Example 3

The following is an example of code that may result in a buffer underwrite, if find() returns a negative value to indicate that ch is not found in srcBuf:

(bad code)
Example Language:
int main() {
...
strncpy(destBuf, &srcBuf[find(srcBuf, ch)], 1024);
...

}

If the index to srcBuf is somehow under user control, this is an arbitrary write-what-where condition.

+ Observed Examples
ReferenceDescription
Unchecked length of SSLv2 challenge value leads to buffer underflow.
Buffer underflow from a small size value with a large buffer (length parameter inconsistency, CWE-130)
Buffer underflow from an all-whitespace string, which causes a counter to be decremented before the buffer while looking for a non-whitespace character.
Buffer underflow resultant from encoded data that triggers an integer overflow.
Product sets an incorrect buffer size limit, leading to "off-by-two" buffer underflow.
Negative value is used in a memcpy() operation, leading to buffer underflow.
Buffer underflow due to mishandled special characters
+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfViewView884CWE Cross-section
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
CERT C Secure CodingARR30-CCWE More SpecificDo not form or use out-of-bounds pointers or array subscripts
+ Content History
Submissions
Submission DateSubmitterOrganization
2009-10-21CWE Content TeamMITRE
Modifications
Modification DateModifierOrganization
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Common_Consequences, Demonstrative_Examples, Observed_Examples, Relationships
2017-11-08CWE Content TeamMITRE
updated Common_Consequences, Demonstrative_Examples, Taxonomy_Mappings

More information is available — Please select a different filter.
Page Last Updated: January 18, 2018