The software performs an iteration or loop without sufficiently limiting the number of times that the loop is executed.
Extended Description
If the iteration can be influenced by an attacker, this weakness could allow attackers to consume excessive resources such as CPU or memory. In many cases, a loop does not need to be infinite in order to cause enough resource consumption to adversely affect the software or its host system; it depends on the amount of resources consumed per iteration.
Relationships
The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More general than a Base weakness.
Base - a weakness that is described in an abstract fashion, but with sufficient details to infer specific methods for detection and prevention. More general than a Variant weakness, but more specific than a Class weakness.
Base - a weakness that is described in an abstract fashion, but with sufficient details to infer specific methods for detection and prevention. More general than a Variant weakness, but more specific than a Class weakness.
Base - a weakness that is described in an abstract fashion, but with sufficient details to infer specific methods for detection and prevention. More general than a Variant weakness, but more specific than a Class weakness.
The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Excessive looping will cause unexpected consumption of resources, such as CPU cycles or memory. The software's operation may slow down, or cause a long time to respond. If limited resources such as memory are consumed for each iteration, the loop may eventually cause a crash or program exit due to exhaustion of resources, such as an out-of-memory error.
Detection Methods
Dynamic Analysis with Manual Results Interpretation
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:
Fuzz Tester
Framework-based Fuzzer
Forced Path Execution
Effectiveness: SOAR Partial
Manual Static Analysis - Source Code
According to SOAR, the following detection techniques may be useful:
Cost effective for partial coverage:
Focused Manual Spotcheck - Focused manual analysis of source
Manual Source Code Review (not inspections)
Effectiveness: SOAR Partial
Automated Static Analysis - Source Code
According to SOAR, the following detection techniques may be useful:
Highly cost effective:
Context-configured Source Code Weakness Analyzer
Effectiveness: High
Architecture or Design Review
According to SOAR, the following detection techniques may be useful:
[REF-62] Mark Dowd, John McDonald
and Justin Schuh. "The Art of Software Security Assessment". Chapter 7, "Looping Constructs", Page 327. 1st Edition. Addison Wesley. 2006.
More information is available — Please select a different filter.
Page Last Updated:
March 29, 2018
Use of the Common Weakness Enumeration and the associated references from this website are subject to the
Terms of Use. For more information, please email
cwe@mitre.org.