CWE

Common Weakness Enumeration

A Community-Developed Dictionary of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors Common Weakness Scoring System
Common Weakness Risk Analysis Framework
Home > CWE List > CWE- Individual Dictionary Definition (2.7)  

Presentation Filter:

CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

 
Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')
Weakness ID: 89 (Weakness Base)Status: Draft
+ Description

Description Summary

The software constructs all or part of an SQL command using externally-influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes special elements that could modify the intended SQL command when it is sent to a downstream component.

Extended Description

Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated SQL query can cause those inputs to be interpreted as SQL instead of ordinary user data. This can be used to alter query logic to bypass security checks, or to insert additional statements that modify the back-end database, possibly including execution of system commands.

SQL injection has become a common issue with database-driven web sites. The flaw is easily detected, and easily exploited, and as such, any site or software package with even a minimal user base is likely to be subject to an attempted attack of this kind. This flaw depends on the fact that SQL makes no real distinction between the control and data planes.

+ Time of Introduction
  • Architecture and Design
  • Implementation
  • Operation
+ Applicable Platforms

Languages

All

Technology Classes

Database-Server

+ Modes of Introduction

This weakness typically appears in data-rich applications that save user inputs in a database.

+ Common Consequences
ScopeEffect

Technical Impact: Read application data

Since SQL databases generally hold sensitive data, loss of confidentiality is a frequent problem with SQL injection vulnerabilities.

Technical Impact: Bypass protection mechanism

If poor SQL commands are used to check user names and passwords, it may be possible to connect to a system as another user with no previous knowledge of the password.

Technical Impact: Bypass protection mechanism

If authorization information is held in a SQL database, it may be possible to change this information through the successful exploitation of a SQL injection vulnerability.

Technical Impact: Modify application data

Just as it may be possible to read sensitive information, it is also possible to make changes or even delete this information with a SQL injection attack.

+ Likelihood of Exploit

Very High

+ Enabling Factors for Exploitation

The application dynamically generates queries that contain user input.

+ Detection Methods

Automated Static Analysis

This weakness can often be detected using automated static analysis tools. Many modern tools use data flow analysis or constraint-based techniques to minimize the number of false positives.

Automated static analysis might not be able to recognize when proper input validation is being performed, leading to false positives - i.e., warnings that do not have any security consequences or do not require any code changes.

Automated static analysis might not be able to detect the usage of custom API functions or third-party libraries that indirectly invoke SQL commands, leading to false negatives - especially if the API/library code is not available for analysis.

This is not a perfect solution, since 100% accuracy and coverage are not feasible.

Automated Dynamic Analysis

This weakness can be detected using dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.

Effectiveness: Moderate

Manual Analysis

Manual analysis can be useful for finding this weakness, but it might not achieve desired code coverage within limited time constraints. This becomes difficult for weaknesses that must be considered for all inputs, since the attack surface can be too large.

+ Demonstrative Examples

Example 1

In 2008, a large number of web servers were compromised using the same SQL injection attack string. This single string worked against many different programs. The SQL injection was then used to modify the web sites to serve malicious code. [1]

Example 2

The following code dynamically constructs and executes a SQL query that searches for items matching a specified name. The query restricts the items displayed to those where owner matches the user name of the currently-authenticated user.

(Bad Code)
Example Language: C# 
...
string userName = ctx.getAuthenticatedUserName();
string query = "SELECT * FROM items WHERE owner = '" + userName + "' AND itemname = '" + ItemName.Text + "'";
sda = new SqlDataAdapter(query, conn);
DataTable dt = new DataTable();
sda.Fill(dt);
...

The query that this code intends to execute follows:

SELECT * FROM items WHERE owner = <userName> AND itemname = <itemName>;

However, because the query is constructed dynamically by concatenating a constant base query string and a user input string, the query only behaves correctly if itemName does not contain a single-quote character. If an attacker with the user name wiley enters the string:

(Attack)
 
name' OR 'a'='a

for itemName, then the query becomes the following:

(Attack)
 
SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name' OR 'a'='a';

The addition of the:

(Attack)
 
OR 'a'='a'

condition causes the WHERE clause to always evaluate to true, so the query becomes logically equivalent to the much simpler query:

(Attack)
 
SELECT * FROM items;

This simplification of the query allows the attacker to bypass the requirement that the query only return items owned by the authenticated user; the query now returns all entries stored in the items table, regardless of their specified owner.

Example 3

This example examines the effects of a different malicious value passed to the query constructed and executed in the previous example.

If an attacker with the user name wiley enters the string:

(Attack)
 
name'; DELETE FROM items; --

for itemName, then the query becomes the following two queries:

(Attack)
Example Language: SQL 
SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name';
DELETE FROM items;
--'

Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements separated by semicolons to be executed at once. While this attack string results in an error on Oracle and other database servers that do not allow the batch-execution of statements separated by semicolons, on databases that do allow batch execution, this type of attack allows the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder of the statement is to be treated as a comment and not executed. In this case the comment character serves to remove the trailing single-quote left over from the modified query. On a database where comments are not allowed to be used in this way, the general attack could still be made effective using a trick similar to the one shown in the previous example.

If an attacker enters the string

(Attack)
 
name'; DELETE FROM items; SELECT * FROM items WHERE 'a'='a

Then the following three valid statements will be created:

(Attack)
 
SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name';
DELETE FROM items;
SELECT * FROM items WHERE 'a'='a';

One traditional approach to preventing SQL injection attacks is to handle them as an input validation problem and either accept only characters from a whitelist of safe values or identify and escape a blacklist of potentially malicious values. Whitelisting can be a very effective means of enforcing strict input validation rules, but parameterized SQL statements require less maintenance and can offer more guarantees with respect to security. As is almost always the case, blacklisting is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example, attackers can:

  • Target fields that are not quoted

  • Find ways to bypass the need for certain escaped meta-characters

  • Use stored procedures to hide the injected meta-characters.

Manually escaping characters in input to SQL queries can help, but it will not make your application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored procedures. Although stored procedures prevent some types of SQL injection attacks, they do not protect against many others. For example, the following PL/SQL procedure is vulnerable to the same SQL injection attack shown in the first example.

(Bad Code)
 
procedure get_item ( itm_cv IN OUT ItmCurTyp, usr in varchar2, itm in varchar2)
is open itm_cv for
' SELECT * FROM items WHERE ' || 'owner = '|| usr || ' AND itemname = ' || itm || ';
end get_item;

Stored procedures typically help prevent SQL injection attacks by limiting the types of statements that can be passed to their parameters. However, there are many ways around the limitations and many interesting statements that can still be passed to stored procedures. Again, stored procedures can prevent some exploits, but they will not make your application secure against SQL injection attacks.

Example 4

MS SQL has a built in function that enables shell command execution. An SQL injection in such a context could be disastrous. For example, a query of the form:

(Bad Code)
 
SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY='$user_input' ORDER BY PRICE

Where $user_input is taken from an untrusted source.

If the user provides the string:

(Attack)
 
'; exec master..xp_cmdshell 'dir' --

The query will take the following form:

(Attack)
 
SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY=''; exec master..xp_cmdshell 'dir' --' ORDER BY PRICE

Now, this query can be broken down into:

  1. a first SQL query: SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY='';

  2. a second SQL query, which executes the dir command in the shell: exec master..xp_cmdshell 'dir'

  3. an MS SQL comment: --' ORDER BY PRICE

As can be seen, the malicious input changes the semantics of the query into a query, a shell command execution and a comment.

Example 5

This code intends to print a message summary given the message ID.

(Bad Code)
Example Language: PHP 
$id = $_COOKIE["mid"];
mysql_query("SELECT MessageID, Subject FROM messages WHERE MessageID = '$id'");

The programmer may have skipped any input validation on $id under the assumption that attackers cannot modify the cookie. However, this is easy to do with custom client code or even in the web browser.

While $id is wrapped in single quotes in the call to mysql_query(), an attacker could simply change the incoming mid cookie to:

(Attack)
 
1432' or '1' = '1

This would produce the resulting query:

(Result)
 
SELECT MessageID, Subject FROM messages WHERE MessageID = '1432' or '1' = '1'

Not only will this retrieve message number 1432, it will retrieve all other messages.

In this case, the programmer could apply a simple modification to the code to eliminate the SQL injection:

(Good Code)
Example Language: PHP 
$id = intval($_COOKIE["mid"]);
mysql_query("SELECT MessageID, Subject FROM messages WHERE MessageID = '$id'");

However, if this code is intended to support multiple users with different message boxes, the code might also need an access control check (CWE-285) to ensure that the application user has the permission to see that message.

Example 6

This example attempts to take a last name provided by a user and enter it into a database.

(Bad Code)
Example Language: Perl 
$userKey = getUserID();
$name = getUserInput();
# ensure only letters, hyphens and apostrophe are allowed
$name = whiteList($name, "^a-zA-z'-$");
$query = "INSERT INTO last_names VALUES('$userKey', '$name')";

While the programmer applies a whitelist to the user input, it has shortcomings. First of all, the user is still allowed to provide hyphens which are used as comment structures in SQL. If a user specifies -- then the remainder of the statement will be treated as a comment, which may bypass security logic. Furthermore, the whitelist permits the apostrophe which is also a data / command separator in SQL. If a user supplies a name with an apostrophe, they may be able to alter the structure of the whole statement and even change control flow of the program, possibly accessing or modifying confidential information. In this situation, both the hyphen and apostrophe are legitimate characters for a last name and permitting them is required. Instead, a programmer may want to use a prepared statement or apply an encoding routine to the input to prevent any data / directive misinterpretations.

+ Observed Examples
ReferenceDescription
chain: SQL injection in library intended for database authentication allows SQL injection and authentication bypass.
SQL injection through an ID that was supposed to be numeric.
SQL injection through an ID that was supposed to be numeric.
SQL injection via user name.
SQL injection via user name or password fields.
SQL injection in security product, using a crafted group name.
SQL injection in authentication library.
+ Potential Mitigations

Phase: Architecture and Design

Strategy: Libraries or Frameworks

Use a vetted library or framework that does not allow this weakness to occur or provides constructs that make this weakness easier to avoid.

For example, consider using persistence layers such as Hibernate or Enterprise Java Beans, which can provide significant protection against SQL injection if used properly.

Phase: Architecture and Design

Strategy: Parameterization

If available, use structured mechanisms that automatically enforce the separation between data and code. These mechanisms may be able to provide the relevant quoting, encoding, and validation automatically, instead of relying on the developer to provide this capability at every point where output is generated.

Process SQL queries using prepared statements, parameterized queries, or stored procedures. These features should accept parameters or variables and support strong typing. Do not dynamically construct and execute query strings within these features using "exec" or similar functionality, since this may re-introduce the possibility of SQL injection. [R.89.3]

Phases: Architecture and Design; Operation

Strategy: Environment Hardening

Run your code using the lowest privileges that are required to accomplish the necessary tasks [R.89.12]. If possible, create isolated accounts with limited privileges that are only used for a single task. That way, a successful attack will not immediately give the attacker access to the rest of the software or its environment. For example, database applications rarely need to run as the database administrator, especially in day-to-day operations.

Specifically, follow the principle of least privilege when creating user accounts to a SQL database. The database users should only have the minimum privileges necessary to use their account. If the requirements of the system indicate that a user can read and modify their own data, then limit their privileges so they cannot read/write others' data. Use the strictest permissions possible on all database objects, such as execute-only for stored procedures.

Phase: Architecture and Design

For any security checks that are performed on the client side, ensure that these checks are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values after the checks have been performed, or by changing the client to remove the client-side checks entirely. Then, these modified values would be submitted to the server.

Phase: Implementation

Strategy: Output Encoding

While it is risky to use dynamically-generated query strings, code, or commands that mix control and data together, sometimes it may be unavoidable. Properly quote arguments and escape any special characters within those arguments. The most conservative approach is to escape or filter all characters that do not pass an extremely strict whitelist (such as everything that is not alphanumeric or white space). If some special characters are still needed, such as white space, wrap each argument in quotes after the escaping/filtering step. Be careful of argument injection (CWE-88).

Instead of building a new implementation, such features may be available in the database or programming language. For example, the Oracle DBMS_ASSERT package can check or enforce that parameters have certain properties that make them less vulnerable to SQL injection. For MySQL, the mysql_real_escape_string() API function is available in both C and PHP.

Phase: Implementation

Strategy: Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, blacklists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.

When constructing SQL query strings, use stringent whitelists that limit the character set based on the expected value of the parameter in the request. This will indirectly limit the scope of an attack, but this technique is less important than proper output encoding and escaping.

Note that proper output encoding, escaping, and quoting is the most effective solution for preventing SQL injection, although input validation may provide some defense-in-depth. This is because it effectively limits what will appear in output. Input validation will not always prevent SQL injection, especially if you are required to support free-form text fields that could contain arbitrary characters. For example, the name "O'Reilly" would likely pass the validation step, since it is a common last name in the English language. However, it cannot be directly inserted into the database because it contains the "'" apostrophe character, which would need to be escaped or otherwise handled. In this case, stripping the apostrophe might reduce the risk of SQL injection, but it would produce incorrect behavior because the wrong name would be recorded.

When feasible, it may be safest to disallow meta-characters entirely, instead of escaping them. This will provide some defense in depth. After the data is entered into the database, later processes may neglect to escape meta-characters before use, and you may not have control over those processes.

Phase: Architecture and Design

Strategy: Enforcement by Conversion

When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other inputs.

Phase: Implementation

Ensure that error messages only contain minimal details that are useful to the intended audience, and nobody else. The messages need to strike the balance between being too cryptic and not being cryptic enough. They should not necessarily reveal the methods that were used to determine the error. Such detailed information can be used to refine the original attack to increase the chances of success.

If errors must be tracked in some detail, capture them in log messages - but consider what could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive information such as passwords in any form. Avoid inconsistent messaging that might accidentally tip off an attacker about internal state, such as whether a username is valid or not.

In the context of SQL Injection, error messages revealing the structure of a SQL query can help attackers tailor successful attack strings.

Phase: Operation

Strategy: Firewall

Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in which the code cannot be fixed (because it is controlled by a third party), as an emergency prevention measure while more comprehensive software assurance measures are applied, or to provide defense in depth.

Effectiveness: Moderate

An application firewall might not cover all possible input vectors. In addition, attack techniques might be available to bypass the protection mechanism, such as using malformed inputs that can still be processed by the component that receives those inputs. Depending on functionality, an application firewall might inadvertently reject or modify legitimate requests. Finally, some manual effort may be required for customization.

Phases: Operation; Implementation

Strategy: Environment Hardening

When using PHP, configure the application so that it does not use register_globals. During implementation, develop the application so that it does not rely on this feature, but be wary of implementing a register_globals emulation that is subject to weaknesses such as CWE-95, CWE-621, and similar issues.

+ Relationships
NatureTypeIDNameView(s) this relationship pertains toView(s)
ChildOfWeakness ClassWeakness Class20Improper Input Validation
Seven Pernicious Kingdoms (primary)700
ChildOfCategoryCategory713OWASP Top Ten 2007 Category A2 - Injection Flaws
Weaknesses in OWASP Top Ten (2007) (primary)629
ChildOfCategoryCategory722OWASP Top Ten 2004 Category A1 - Unvalidated Input
Weaknesses in OWASP Top Ten (2004)711
ChildOfCategoryCategory727OWASP Top Ten 2004 Category A6 - Injection Flaws
Weaknesses in OWASP Top Ten (2004) (primary)711
ChildOfCategoryCategory7512009 Top 25 - Insecure Interaction Between Components
Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors (primary)750
ChildOfCategoryCategory8012010 Top 25 - Insecure Interaction Between Components
Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors (primary)800
ChildOfCategoryCategory810OWASP Top Ten 2010 Category A1 - Injection
Weaknesses in OWASP Top Ten (2010) (primary)809
ChildOfCategoryCategory8642011 Top 25 - Insecure Interaction Between Components
Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors (primary)900
ChildOfCategoryCategory896SFP Cluster: Tainted Input
Software Fault Pattern (SFP) Clusters (primary)888
ChildOfCategoryCategory929OWASP Top Ten 2013 Category A1 - Injection
Weaknesses in OWASP Top Ten (2013) (primary)928
ChildOfWeakness ClassWeakness Class943Improper Neutralization of Special Elements in Data Query Logic
Development Concepts (primary)699
Research Concepts (primary)1000
ParentOfWeakness VariantWeakness Variant564SQL Injection: Hibernate
Development Concepts (primary)699
Weaknesses in OWASP Top Ten (2013) (primary)928
Research Concepts (primary)1000
MemberOfViewView630Weaknesses Examined by SAMATE
Weaknesses Examined by SAMATE (primary)630
MemberOfViewView635Weaknesses Used by NVD
Weaknesses Used by NVD (primary)635
MemberOfViewView884CWE Cross-section
CWE Cross-section (primary)884
CanFollowWeakness BaseWeakness Base456Missing Initialization of a Variable
Research Concepts1000
+ Relationship Notes

SQL injection can be resultant from special character mismanagement, MAID, or blacklist/whitelist problems. It can be primary to authentication errors.

+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERSQL injection
7 Pernicious KingdomsSQL Injection
CLASPSQL injection
OWASP Top Ten 2007A2Injection Flaws
OWASP Top Ten 2004A1Unvalidated Input
OWASP Top Ten 2004A6Injection Flaws
WASC19SQL Injection
+ White Box Definitions

A weakness where the code path has:

1. start statement that accepts input and

2. end statement that performs an SQL command where

a. the input is part of the SQL command and

b. input contains SQL syntax (esp. query separator)

+ References
[R.89.1] [REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 1: SQL Injection." Page 3. McGraw-Hill. 2010.
[R.89.2] [REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 12, "Database Input Issues" Page 397. 2nd Edition. Microsoft. 2002.
[R.89.3] OWASP. "SQL Injection Prevention Cheat Sheet". <http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet>.
[R.89.4] Steven Friedl. "SQL Injection Attacks by Example". 2007-10-10. <http://www.unixwiz.net/techtips/sql-injection.html>.
[R.89.5] Ferruh Mavituna. "SQL Injection Cheat Sheet". 2007-03-15. <http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/>.
[R.89.6] David Litchfield, Chris Anley, John Heasman and Bill Grindlay. "The Database Hacker's Handbook: Defending Database Servers". Wiley. 2005-07-14.
[R.89.7] David Litchfield. "The Oracle Hacker's Handbook: Hacking and Defending Oracle". Wiley. 2007-01-30.
[R.89.8] Microsoft. "SQL Injection". December 2008. <http://msdn.microsoft.com/en-us/library/ms161953.aspx>.
[R.89.9] Microsoft Security Vulnerability Research & Defense. "SQL Injection Attack". <http://blogs.technet.com/swi/archive/2008/05/29/sql-injection-attack.aspx>.
[R.89.10] Michael Howard. "Giving SQL Injection the Respect it Deserves". 2008-05-15. <http://blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx>.
[R.89.11] Frank Kim. "Top 25 Series - Rank 2 - SQL Injection". SANS Software Security Institute. 2010-03-01. <http://blogs.sans.org/appsecstreetfighter/2010/03/01/top-25-series-rank-2-sql-injection/>.
[R.89.12] [REF-31] Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. <https://buildsecurityin.us-cert.gov/daisy/bsi/articles/knowledge/principles/351.html>.
[R.89.13] [REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 8, "SQL Queries", Page 431.. 1st Edition. Addison Wesley. 2006.
[REF-7] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 17, "SQL Injection", Page 1061.. 1st Edition. Addison Wesley. 2006.
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
Externally Mined
Externally Mined
Externally Mined
Modifications
Modification DateModifierOrganizationSource
2008-07-01CigitalExternal
updated Time_of_Introduction
2008-08-01KDM AnalyticsExternal
added/updated white box definitions
2008-08-15VeracodeExternal
Suggested OWASP Top Ten 2004 mapping
2008-09-08MITREInternal
updated Applicable_Platforms, Common_Consequences, Modes_of_Introduction, Name, Relationships, Other_Notes, Relationship_Notes, Taxonomy_Mappings
2008-10-14MITREInternal
updated Description
2008-11-24MITREInternal
updated Observed_Examples
2009-01-12MITREInternal
updated Demonstrative_Examples, Description, Enabling_Factors_for_Exploitation, Modes_of_Introduction, Name, Observed_Examples, Other_Notes, Potential_Mitigations, References, Relationships
2009-03-10MITREInternal
updated Potential_Mitigations
2009-05-27MITREInternal
updated Demonstrative_Examples, Name, Related_Attack_Patterns
2009-07-17External
Improved the White_Box_Definition
2009-07-27MITREInternal
updated Description, Name, White_Box_Definitions
2009-12-28MITREInternal
updated Potential_Mitigations
2010-02-16MITREInternal
updated Demonstrative_Examples, Detection_Factors, Potential_Mitigations, References, Relationships, Taxonomy_Mappings
2010-04-05MITREInternal
updated Demonstrative_Examples, Potential_Mitigations
2010-06-21MITREInternal
updated Common_Consequences, Demonstrative_Examples, Description, Detection_Factors, Name, Potential_Mitigations, References, Relationships
2010-09-27MITREInternal
updated Potential_Mitigations
2011-03-29MITREInternal
updated Demonstrative_Examples
2011-06-01MITREInternal
updated Common_Consequences
2011-06-27MITREInternal
updated Relationships
2011-09-13MITREInternal
updated Potential_Mitigations, References
2012-05-11MITREInternal
updated Potential_Mitigations, References, Related_Attack_Patterns, Relationships
2012-10-30MITREInternal
updated Potential_Mitigations
2013-07-17MITREInternal
updated Relationships
2014-06-23MITREInternal
updated Relationships
Previous Entry Names
Change DatePrevious Entry Name
2008-04-11SQL Injection
2008-09-09Failure to Sanitize Data into SQL Queries (aka 'SQL Injection')
2009-01-12Failure to Sanitize Data within SQL Queries (aka 'SQL Injection')
2009-05-27Failure to Preserve SQL Query Structure (aka 'SQL Injection')
2009-07-27Failure to Preserve SQL Query Structure ('SQL Injection')
2010-06-21Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection')
Page Last Updated: June 23, 2014