The software does not sufficiently delimit the arguments being passed to a component in another control sphere, allowing alternate arguments to be provided, leading to potentially security-relevant changes.
Relationships
The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More general than a Base weakness.
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More general than a Base weakness.
Relevant to the view "Development Concepts" (CWE-699)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More general than a Base weakness.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Architecture and Design
Implementation
REALIZATION: This weakness is caused during implementation of an architectural security tactic.
Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Confidentiality Integrity Availability Other
Technical Impact: Execute Unauthorized Code or Commands; Alter Execution Logic; Read Application Data; Modify Application Data
An attacker could include arguments that allow unintended commands or code to be executed, allow sensitive data to be read or modified or could cause other unintended behavior.
Demonstrative Examples
Example 1
The following simple program accepts a filename as a command line argument and displays the contents of the file back to the user. The program is installed setuid root because it is intended for use as a learning tool to allow system administrators in-training to inspect privileged system files without giving them the ability to modify them or damage the system.
Because the program runs with root privileges, the call to system() also executes with root privileges. If a user specifies a standard filename, the call works as expected. However, if an attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a lack of arguments and then plows on to recursively delete the contents of the root partition.
Note that if argv[1] is a very long argument, then this issue might also be subject to a buffer overflow (CWE-120).
Web browser executes Telnet sessions using command line arguments that are specified by the web site, which could allow remote attackers to execute arbitrary commands.
Web browser allows remote attackers to execute commands by spawning Telnet with a log file option on the command line and writing arbitrary code into an executable file which is later executed.
Argument injection vulnerability in the mail function for PHP may allow attackers to bypass safe mode restrictions and modify command line arguments to the MTA (e.g. sendmail) possibly executing commands.
Help and Support center in windows does not properly validate HCP URLs, which allows remote attackers to execute arbitrary code via quotation marks in an "hcp://" URL.
Mail client does not sufficiently filter parameters of mailto: URLs when using them as arguments to mail executable, which allows remote attackers to execute arbitrary programs.
Mail client allows remote attackers to execute arbitrary code via a URI that uses a UNC network share pathname to provide an alternate configuration file.
Argument injection vulnerability in TellMe 1.2 and earlier allows remote attackers to modify command line arguments for the Whois program and obtain sensitive information via "--" style options in the q_Host parameter.
Beagle before 0.2.5 can produce certain insecure command lines to launch external helper applications while indexing, which allows attackers to execute arbitrary commands. NOTE: it is not immediately clear whether this issue involves argument injection, shell metacharacters, or other issues.
Argument injection vulnerability in Internet Explorer 6 for Windows XP SP2 allows user-assisted remote attackers to modify command line arguments to an invoked mail client via " (double quote) characters in a mailto: scheme handler, as demonstrated by launching Microsoft Outlook with an arbitrary filename as an attachment. NOTE: it is not clear whether this issue is implementation-specific or a problem in the Microsoft API.
Argument injection vulnerability in Mozilla Firefox 1.0.6 allows user-assisted remote attackers to modify command line arguments to an invoked mail client via " (double quote) characters in a mailto: scheme handler, as demonstrated by launching Microsoft Outlook with an arbitrary filename as an attachment. NOTE: it is not clear whether this issue is implementation-specific or a problem in the Microsoft API.
Argument injection vulnerability in Avant Browser 10.1 Build 17 allows user-assisted remote attackers to modify command line arguments to an invoked mail client via " (double quote) characters in a mailto: scheme handler, as demonstrated by launching Microsoft Outlook with an arbitrary filename as an attachment. NOTE: it is not clear whether this issue is implementation-specific or a problem in the Microsoft API.
Argument injection vulnerability in the URI handler in Skype 2.0.*.104 and 2.5.*.0 through 2.5.*.78 for Windows allows remote authorized attackers to download arbitrary files via a URL that contains certain command-line switches.
Argument injection vulnerability in WinSCP 3.8.1 build 328 allows remote attackers to upload or download arbitrary files via encoded spaces and double-quote characters in a scp or sftp URI.
Argument injection vulnerability in the Windows Object Packager (packager.exe) in Microsoft Windows XP SP1 and SP2 and Server 2003 SP1 and earlier allows remote user-assisted attackers to execute arbitrary commands via a crafted file with a "/" (slash) character in the filename of the Command Line property, followed by a valid file extension, which causes the command before the slash to be executed, aka "Object Packager Dialogue Spoofing Vulnerability."
Argument injection vulnerability in HyperAccess 8.4 allows user-assisted remote attackers to execute arbitrary vbscript and commands via the /r option in a telnet:// URI, which is configured to use hawin32.exe.
Argument injection vulnerability in the telnet daemon (in.telnetd) in Solaris 10 and 11 (SunOS 5.10 and 5.11) misinterprets certain client "-f" sequences as valid requests for the login program to skip authentication, which allows remote attackers to log into certain accounts, as demonstrated by the bin account.
Language interpreter's mail function accepts another argument that is concatenated to a string used in a dangerous popen() call. Since there is no neutralization of this argument, both OS Command Injection (CWE-78) and Argument Injection (CWE-88) are possible.
Potential Mitigations
Phase: Architecture and Design
Strategy: Input Validation
Understand all the potential areas where untrusted inputs can enter your software: parameters or arguments, cookies, anything read from the network, environment variables, request headers as well as content, URL components, e-mail, files, databases, and any external systems that provide data to the application. Perform input validation at well-defined interfaces.
Phase: Implementation
Strategy: Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length, type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields, and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's environment changes. This can give attackers enough room to bypass the intended validation. However, blacklists can be useful for detecting potential attacks or determining which inputs are so malformed that they should be rejected outright.
Phase: Implementation
Directly convert your input type into the expected data type, such as using a conversion function that translates a string into a number. After converting to the expected data type, ensure that the input's values fall within the expected range of allowable values and that multi-field consistencies are maintained.
Phase: Implementation
Inputs should be decoded and canonicalized to the application's current internal representation before being validated (CWE-180, CWE-181). Make sure that your application does not inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are allowed to contain properly-encoded dangerous content.
Phase: Implementation
When exchanging data between components, ensure that both components are using the same character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the encoding you are using whenever the protocol allows you to do so.
Phase: Implementation
When your application combines data from multiple sources, perform the validation after the sources have been combined. The individual data elements may pass the validation step but violate the intended restrictions after they have been combined.
Phase: Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques use data flow analysis to minimize the number of false positives. This is not a perfect solution, since 100% accuracy and coverage are not feasible.
Phase: Testing
Use dynamic tools and techniques that interact with the software using large test suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The software's operation may slow down, but it should not become unstable, crash, or generate incorrect results.
Weakness Ordinalities
Ordinality
Description
Primary
(where the weakness exists independent of other weaknesses)
Affected Resources
System Process
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
View - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).
At one layer of abstraction, this can overlap other weaknesses that have whitespace problems, e.g. injection of javascript into attributes of HTML tags.
Taxonomy Mappings
Mapped Taxonomy Name
Node ID
Fit
Mapped Node Name
PLOVER
Argument Injection or Modification
CERT C Secure Coding
ENV03-C
Sanitize the environment when invoking external programs
[REF-62] Mark Dowd, John McDonald
and Justin Schuh. "The Art of Software Security Assessment". Chapter 10, "The Argument Array", Page 567. 1st Edition. Addison Wesley. 2006.
More information is available — Please select a different filter.
Page Last Updated:
March 29, 2018
Use of the Common Weakness Enumeration and the associated references from this website are subject to the
Terms of Use. For more information, please email
cwe@mitre.org.