CWE-916: Use of Password Hash With Insufficient Computational Effort
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product generates a hash for a password, but it uses a scheme that does not provide a sufficient level of computational effort that would make password cracking attacks infeasible or expensive.
Many password storage mechanisms compute a hash and store the hash, instead of storing the original password in plaintext. In this design, authentication involves accepting an incoming password, computing its hash, and comparing it to the stored hash. Many hash algorithms are designed to execute quickly with minimal overhead, even cryptographic hashes. However, this efficiency is a problem for password storage, because it can reduce an attacker's workload for brute-force password cracking. If an attacker can obtain the hashes through some other method (such as SQL injection on a database that stores hashes), then the attacker can store the hashes offline and use various techniques to crack the passwords by computing hashes efficiently. Without a built-in workload, modern attacks can compute large numbers of hashes, or even exhaust the entire space of all possible passwords, within a very short amount of time, using massively-parallel computing (such as cloud computing) and GPU, ASIC, or FPGA hardware. In such a scenario, an efficient hash algorithm helps the attacker. There are several properties of a hash scheme that are relevant to its strength against an offline, massively-parallel attack:
Note that the security requirements for the product may vary depending on the environment and the value of the passwords. Different schemes might not provide all of these properties, yet may still provide sufficient security for the environment. Conversely, a solution might be very strong in preserving one property, which still being very weak for an attack against another property, or it might not be able to significantly reduce the efficiency of a massively-parallel attack. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "Architectural Concepts" (CWE-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Example 1 In this example, a new user provides a new username and password to create an account. The program hashes the new user's password then stores it in a database. (bad code)
Example Language: Python
def storePassword(userName,Password):
hasher = hashlib.new('md5')
hasher.update(Password) hashedPassword = hasher.digest() # UpdateUserLogin returns True on success, False otherwise return updateUserLogin(userName,hashedPassword) While it is good to avoid storing a cleartext password, the program does not provide a salt to the hashing function, thus increasing the chances of an attacker being able to reverse the hash and discover the original password if the database is compromised. Fixing this is as simple as providing a salt to the hashing function on initialization: (good code)
Example Language: Python
def storePassword(userName,Password):
hasher = hashlib.new('md5',b'SaltGoesHere')
hasher.update(Password) hashedPassword = hasher.digest() # UpdateUserLogin returns True on success, False otherwise return updateUserLogin(userName,hashedPassword) Note that regardless of the usage of a salt, the md5 hash is no longer considered secure, so this example still exhibits CWE-327.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |