CWE

Common Weakness Enumeration

A Community-Developed List of Software Weakness Types

CWE/SANS Top 25 Most Dangerous Software Errors
Home > CWE List > CWE- Individual Dictionary Definition (3.0)  
ID

CWE-328: Reversible One-Way Hash

Weakness ID: 328
Abstraction: Base
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The product uses a hashing algorithm that produces a hash value that can be used to determine the original input, or to find an input that can produce the same hash, more efficiently than brute force techniques.
+ Extended Description
This weakness is especially dangerous when the hash is used in security algorithms that require the one-way property to hold. For example, if an authentication system takes an incoming password and generates a hash, then compares the hash to another hash that it has stored in its authentication database, then the ability to create a collision could allow an attacker to provide an alternate password that produces the same target hash, bypassing authentication.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory1013Encrypt Data
+ Relevant to the view "Development Concepts" (CWE-699)
NatureTypeIDName
MemberOfCategoryCategory310Cryptographic Issues
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the software life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and DesignCOMMISSION: This weakness refers to an incorrect design related to an architectural security tactic.
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

(Language-Independent classes): (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Access Control

Technical Impact: Bypass Protection Mechanism

+ Demonstrative Examples

Example 1

In both of these examples, a user is logged in if their given password matches a stored password:

(bad)
Example Language:
unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ... );
//Login if hash matches stored hash

if (equal(ctext, secret_password())) {
login_user();

}

}
(bad)
Example Language: Java 
String plainText = new String(plainTextIn);
MessageDigest encer = MessageDigest.getInstance("SHA");
encer.update(plainTextIn);
byte[] digest = password.digest();
//Login if hash matches stored hash

if (equal(digest,secret_password())) {
login_user();

}

This code uses the SHA-1 hash on user passwords, but the SHA-1 algorithm is no longer considered secure. Note this code also exhibits CWE-759 (Use of a One-Way Hash without a Salt).

+ Observed Examples
ReferenceDescription
Hard-coded hashed values for username and password contained in client-side script, allowing brute-force offline attacks.
+ Potential Mitigations

Phase: Architecture and Design

Use an adaptive hash function that can be configured to change the amount of computational effort needed to compute the hash, such as the number of iterations ("stretching") or the amount of memory required. Some hash functions perform salting automatically. These functions can significantly increase the overhead for a brute force attack compared to intentionally-fast functions such as MD5. For example, rainbow table attacks can become infeasible due to the high computing overhead. Finally, since computing power gets faster and cheaper over time, the technique can be reconfigured to increase the workload without forcing an entire replacement of the algorithm in use. Some hash functions that have one or more of these desired properties include bcrypt [REF-291], scrypt [REF-292], and PBKDF2 [REF-293]. While there is active debate about which of these is the most effective, they are all stronger than using salts with hash functions with very little computing overhead. Note that using these functions can have an impact on performance, so they require special consideration to avoid denial-of-service attacks. However, their configurability provides finer control over how much CPU and memory is used, so it could be adjusted to suit the environment's needs.

Effectiveness: High

+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERReversible One-Way Hash
+ References
[REF-289] Alexander Sotirov et al.. "MD5 considered harmful today". <http://www.phreedom.org/research/rogue-ca/>.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 2, "Common Vulnerabilities of Integrity", Page 47.. 1st Edition. Addison Wesley. 2006.
[REF-291] Johnny Shelley. "bcrypt". <http://bcrypt.sourceforge.net/>.
[REF-292] Colin Percival. "Tarsnap - The scrypt key derivation function and encryption utility". <http://www.tarsnap.com/scrypt.html>.
[REF-293] B. Kaliski. "RFC2898 - PKCS #5: Password-Based Cryptography Specification Version 2.0". 5.2 PBKDF2. 2000. <http://tools.ietf.org/html/rfc2898>.
[REF-294] Coda Hale. "How To Safely Store A Password". 2010-01-31. <http://codahale.com/how-to-safely-store-a-password/>.
[REF-295] Brian Krebs. "How Companies Can Beef Up Password Security (interview with Thomas H. Ptacek)". 2012-06-11. <http://krebsonsecurity.com/2012/06/how-companies-can-beef-up-password-security/>.
[REF-296] Solar Designer. "Password security: past, present, future". 2012. <http://www.openwall.com/presentations/PHDays2012-Password-Security/>.
[REF-297] Troy Hunt. "Our password hashing has no clothes". 2012-06-26. <http://www.troyhunt.com/2012/06/our-password-hashing-has-no-clothes.html>.
[REF-298] Joshbw. "Should we really use bcrypt/scrypt?". 2012-06-08. <http://www.analyticalengine.net/2012/06/should-we-really-use-bcryptscrypt/>.
+ Content History
Submissions
Submission DateSubmitterOrganizationSource
PLOVER
Modifications
Modification DateModifierOrganizationSource
2008-09-08CWE Content TeamMITRE
updated Relationships, Observed_Example, Taxonomy_Mappings
2008-10-14CWE Content TeamMITRE
updated Description
2009-01-12CWE Content TeamMITRE
updated Description, References
2009-10-29CWE Content TeamMITRE
updated Relationships
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated References, Related_Attack_Patterns, Relationships
2012-10-30CWE Content TeamMITRE
updated Demonstrative_Examples, Potential_Mitigations, References
2014-02-18CWE Content TeamMITRE
updated Potential_Mitigations, References
2014-06-23CWE Content TeamMITRE
updated Relationships
2014-07-30CWE Content TeamMITRE
updated Relationships
2017-11-08CWE Content TeamMITRE
updated Applicable_Platforms, Modes_of_Introduction, References, Relationships

More information is available — Please select a different filter.
Page Last Updated: November 14, 2017