CWE-1037: Processor Optimization Removal or Modification of Security-critical Code
Weakness ID: 1037
Vulnerability Mapping:ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities Abstraction:
BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
The developer builds a security-critical protection mechanism into the software, but the processor optimizes the execution of the program such that the mechanism is removed or modified.
Common Consequences
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
Scope
Impact
Likelihood
Integrity
Technical Impact: Bypass Protection Mechanism
A successful exploitation of this weakness will change the order of an application's execution and will likely be used to bypass specific protection mechanisms. This bypass can be exploited further to potentially read data that should otherwise be unaccessible.
High
Relationships
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Software Development" (CWE-699)
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
Phase
Note
Architecture and Design
Optimizations built into the design of the processor can have unintended consequences during the execution of an application.
Applicable Platforms
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Intel, ARM, and AMD processor optimizations related to speculative execution and branch prediction cause access control checks to be bypassed when placing data into the cache. Often known as "Spectre".
Intel, ARM, and AMD processor optimizations related to speculative execution and branch prediction cause access control checks to be bypassed when placing data into the cache. Often known as "Spectre".
Intel processor optimizations related to speculative execution cause access control checks to be bypassed when placing data into the cache. Often known as "Meltdown".
Weakness Ordinalities
Ordinality
Description
Primary
(where the weakness exists independent of other weaknesses)
This weakness does not depend on other weaknesses and is the result of choices made by the processor in executing the specified application.
Detection
Methods
White Box
In theory this weakness can be detected through the use of white box testing techniques where specifically crafted test cases are used in conjunction with debuggers to verify the order of statements being executed.
Effectiveness: Opportunistic
Note: Although the mentioned detection method is theoretically possible, the use of speculative execution is a preferred way of increasing processor performance. The reality is that a large number of statements are executed out of order, and determining if any of them break an access control property would be extremely opportunistic.
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
(this CWE ID may be used to map to real-world vulnerabilities)
Reason:
Acceptable-Use
Rationale:
This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments:
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
Notes
Maintenance
As of CWE 4.9, members of the CWE Hardware SIG are closely analyzing this entry and others to improve CWE's coverage of transient execution weaknesses, which include issues related to Spectre, Meltdown, and other attacks. Additional investigation may include other weaknesses related to microarchitectural state. As a result, this entry might change significantly in CWE 4.10.
[REF-11] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz and Yuval Yarom. "Spectre Attacks: Exploiting Speculative Execution". 2018-01-03.
<https://arxiv.org/abs/1801.01203>.
[REF-12] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom and Mike Hamburg. "Meltdown". 2018-01-03.
<https://arxiv.org/abs/1801.01207>.
Content
History
Submissions
Submission Date
Submitter
Organization
2018-03-07
(CWE 3.1, 2018-03-29)
CWE Content Team
MITRE
Modifications
Modification Date
Modifier
Organization
2020-02-24
CWE Content Team
MITRE
updated Relationships
2020-06-25
CWE Content Team
MITRE
updated Relationships
2021-03-15
CWE Content Team
MITRE
updated Related_Attack_Patterns
2022-10-13
CWE Content Team
MITRE
updated Applicable_Platforms, Maintenance_Notes
2023-04-27
CWE Content Team
MITRE
updated Relationships
2023-06-29
CWE Content Team
MITRE
updated Mapping_Notes
More information is available — Please edit the custom filter or select a different filter.