CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-1264: Hardware Logic with Insecure De-Synchronization between Control and Data Channels (4.16)  
ID

CWE-1264: Hardware Logic with Insecure De-Synchronization between Control and Data Channels

Weakness ID: 1264
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The hardware logic for error handling and security checks can incorrectly forward data before the security check is complete.
+ Extended Description

Many high-performance on-chip bus protocols and processor data-paths employ separate channels for control and data to increase parallelism and maximize throughput. Bugs in the hardware logic that handle errors and security checks can make it possible for data to be forwarded before the completion of the security checks. If the data can propagate to a location in the hardware observable to an attacker, loss of data confidentiality can occur. 'Meltdown' is a concrete example of how de-synchronization between data and permissions checking logic can violate confidentiality requirements. Data loaded from a page marked as privileged was returned to the cpu regardless of current privilege level for performance reasons. The assumption was that the cpu could later remove all traces of this data during the handling of the illegal memory access exception, but this assumption was proven false as traces of the secret data were not removed from the microarchitectural state.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Confidentiality

Technical Impact: Read Memory; Read Application Data

+ Potential Mitigations

Phase: Architecture and Design

Thoroughly verify the data routing logic to ensure that any error handling or security checks effectively block illegal dataflows.

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 821 Incorrect Synchronization
PeerOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 1037 Processor Optimization Removal or Modification of Security-critical Code
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1196 Security Flow Issues
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design The weakness can be introduced in the data transfer or bus protocol itself or in the implementation.
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Operating Systems

Class: Not OS-Specific (Undetermined Prevalence)

Architectures

Class: Not Architecture-Specific (Undetermined Prevalence)

Technologies

Class: Not Technology-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

There are several standard on-chip bus protocols used in modern SoCs to allow communication between components. There are a wide variety of commercially available hardware IP implementing the interconnect logic for these protocols. A bus connects components which initiate/request communications such as processors and DMA controllers (bus masters) with peripherals which respond to requests. In a typical system, the privilege level or security designation of the bus master along with the intended functionality of each peripheral determine the security policy specifying which specific bus masters can access specific peripherals. This security policy (commonly referred to as a bus firewall) can be enforced using separate IP/logic from the actual interconnect responsible for the data routing.

(bad code)
Example Language: Other 
The firewall and data routing logic becomes de-synchronized due to a hardware logic bug allowing components that should not be allowed to communicate to share data. For example, consider an SoC with two processors. One is being used as a root of trust and can access a cryptographic key storage peripheral. The other processor (application cpu) may run potentially untrusted code and should not access the key store. If the application cpu can issue a read request to the key store which is not blocked due to de-synchronization of data routing and the bus firewall, disclosure of cryptographic keys is possible.
(good code)
Example Language: Other 
All data is correctly buffered inside the interconnect until the firewall has determined that the endpoint is allowed to receive the data.

+ Observed Examples
Reference Description
Systems with microprocessors utilizing speculative execution and indirect branch prediction may allow unauthorized disclosure of information to an attacker with local user access via a side-channel analysis of the data cache.
+ Weakness Ordinalities
Ordinality Description
Primary
(where the weakness exists independent of other weaknesses)
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1401 Comprehensive Categorization: Concurrency
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Maintenance

As of CWE 4.9, members of the CWE Hardware SIG are closely analyzing this entry and others to improve CWE's coverage of transient execution weaknesses, which include issues related to Spectre, Meltdown, and other attacks. Additional investigation may include other weaknesses related to microarchitectural state. As a result, this entry might change significantly in CWE 4.10.
+ Content History
+ Submissions
Submission Date Submitter Organization
2020-05-22
(CWE 4.1, 2020-02-24)
Nicole Fern Cycuity (originally submitted as Tortuga Logic)
+ Modifications
Modification Date Modifier Organization
2020-08-20 CWE Content Team MITRE
updated Description, Related_Attack_Patterns
2021-07-20 CWE Content Team MITRE
updated Related_Attack_Patterns
2021-10-28 CWE Content Team MITRE
updated Weakness_Ordinalities
2022-10-13 CWE Content Team MITRE
updated Maintenance_Notes
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
Page Last Updated: November 19, 2024