CWE-1223: Race Condition for Write-Once Attributes
Weakness ID: 1223
Vulnerability Mapping:ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities Abstraction:
BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
A write-once register in hardware design is programmable by an untrusted software component earlier than the trusted software component, resulting in a race condition issue.
Extended Description
Integrated circuits and hardware IP software programmable controls and settings are commonly stored in register circuits. These register contents have to be initialized at hardware reset to defined default values that are hard coded in the hardware description language (HDL) code of the hardware unit. A common security protection method used to protect register settings from modification by software is to make them write-once. This means the hardware implementation only allows writing to such registers once, and they become read-only after having been written once by software. This is useful to allow initial boot software to configure systems settings to secure values while blocking runtime software from modifying such hardware settings.
Implementation issues in hardware design of such controls can expose such registers to a race condition security flaw. For example, consider a hardware design that has two different software/firmware modules executing in parallel. One module is trusted (module A) and another is untrusted (module B). In this design it could be possible for Module B to send write cycles to the write-once register before Module A. Since the field is write-once the programmed value from Module A will be ignored and the pre-empted value programmed by Module B will be used by hardware.
Common Consequences
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
Scope
Impact
Likelihood
Access Control
Technical Impact: Bypass Protection Mechanism
System configuration cannot be programmed in a secure way.
Potential Mitigations
Phase: Architecture and Design
During hardware design all register write-once or sticky fields must be evaluated for proper configuration.
Phase: Testing
The testing phase should use automated tools to test that values are not reprogrammable and that write-once fields lock on writing zeros.
Relationships
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Hardware Design" (CWE-1194)
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
Phase
Note
Architecture and Design
This weakness can appear in designs that use register write-once attributes with two or more software/firmware modules with varying levels of trust executing in parallel.
Applicable Platforms
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages
Verilog
(Undetermined Prevalence)
VHDL
(Undetermined Prevalence)
Technologies
Class: System on Chip
(Undetermined Prevalence)
Demonstrative Examples
Example 1
consider the example design module system verilog code shown below. register_write_once_example module is an example of register that has a write-once field defined. Bit 0 field captures the write_once_status value.
always @(posedge Clk or negedge ip_resetn)
if (~ip_resetn)
begin
Data_out <= 16'h0000;
Write_once_status <= 1'b0;
end
else if (write & ~Write_once_status)
begin
Data_out <= Data_in & 16'hFFFE; // Input data written to register after masking bit 0
Write_once_status <= 1'b1; // Write once status set after first write.
The first system component that sends a write cycle to this register can program the value. This could result in a race condition security issue in the SoC design, if an untrusted agent is running in the system in parallel with the trusted component that is expected to program the register.
(good code)
Trusted firmware or software trying to set the write-once field:
Must confirm the Write_once_status (bit 0) value is zero, before programming register. If another agent has programmed the register before, then Write_once_status value will be one.
After writing to the register, the trusted software can issue a read to confirm that the valid setting has been programmed.
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
(this CWE ID may be used to map to real-world vulnerabilities)
Reason:
Acceptable-Use
Rationale:
This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments:
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.