CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection (4.16)  
ID

CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection

Weakness ID: 1233
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product uses a register lock bit protection mechanism, but it does not ensure that the lock bit prevents modification of system registers or controls that perform changes to important hardware system configuration.
+ Extended Description

Integrated circuits and hardware intellectual properties (IPs) might provide device configuration controls that need to be programmed after device power reset by a trusted firmware or software module, commonly set by BIOS/bootloader. After reset, there can be an expectation that the controls cannot be used to perform any further modification. This behavior is commonly implemented using a trusted lock bit, which can be set to disable writes to a protected set of registers or address regions. The lock protection is intended to prevent modification of certain system configuration (e.g., memory/memory protection unit configuration).

However, if the lock bit does not effectively write-protect all system registers or controls that could modify the protected system configuration, then an adversary may be able to use software to access the registers/controls and modify the protected hardware configuration.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Access Control

Technical Impact: Modify Memory

System Configuration protected by the lock bit can be modified even when the lock is set.
+ Potential Mitigations

Phases: Architecture and Design; Implementation; Testing

  • Security lock bit protections must be reviewed for design inconsistency and common weaknesses.
  • Security lock programming flow and lock properties must be tested in pre-silicon and post-silicon testing.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 284 Improper Access Control
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 667 Improper Locking
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1199 General Circuit and Logic Design Concerns
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design Such issues could be introduced during hardware architecture and design and identified later during Testing or System Configuration phases.
Implementation Such issues could be introduced during implementation and identified later during Testing or System Configuration phases.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Operating Systems

Class: Not OS-Specific (Undetermined Prevalence)

Architectures

Class: Not Architecture-Specific (Undetermined Prevalence)

Technologies

Class: Not Technology-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

Consider the example design below for a digital thermal sensor that detects overheating of the silicon and triggers system shutdown. The system critical temperature limit (CRITICAL_TEMP_LIMIT) and thermal sensor calibration (TEMP_SENSOR_CALIB) data have to be programmed by the firmware.

(bad code)
Example Language: Other 
Register Field description
CRITICAL_TEMP_LIMIT [31:8] Reserved field; Read only; Default 0
[7:0] Critical temp 0-255 Centigrade; Read-write-lock; Default 125
TEMP_SENSOR_CALIB [31:0] Thermal sensor calibration data. A slope value used to map sensor reading to a degree Centigrade. Read-write; Default 25
TEMP_SENSOR_LOCK [31:1] Reserved field; Read only; Default 0
[0] Lock bit, locks CRITICAL_TEMP_LIMIT register; Write-1-once; Default 0
TEMP_HW_SHUTDOWN [31:2] Reserved field; Read only; Default 0
[1] Enable hardware shutdown on a critical temperature detection; Read-write; Default 0
CURRENT_TEMP [31:8] Reserved field; Read only; Default 0
[7:0] Current Temp 0-255 Centigrade; Read-only; Default 0

In this example note that only the CRITICAL_TEMP_LIMIT register is protected by the TEMP_SENSOR_LOCK bit, while the security design intent is to protect any modification of the critical temperature detection and response.

The response of the system, if the system heats to a critical temperature, is controlled by TEMP_HW_SHUTDOWN bit [1], which is not lockable. Also, the TEMP_SENSOR_CALIB register is not protected by the lock bit.

By modifying the temperature sensor calibration, the conversion of the sensor data to a degree centigrade can be changed, such that the current temperature will never be detected to exceed critical temperature value programmed by the protected lock.

Similarly, by modifying the TEMP_HW_SHUTDOWN.Enable bit, the system response detection of the current temperature exceeding critical temperature can be disabled.

(good code)
 

Change TEMP_HW_SHUTDOWN and TEMP_SENSOR_CALIB controls to be locked by TEMP_SENSOR_LOCK.

TEMP_SENSOR_CALIB [31:0] Thermal sensor calibration data. A slope value used to map sensor reading to a degree Centigrade. Read-write-Lock; Default 25; Locked by TEMP_SENSOR_LOCK bit[0]
TEMP_HW_SHUTDOWN [31:2] Reserved field; Read only; Default 0

[1] Enable hardware shutdown on critical temperature detection; Read-write-Lock; Default 0; Locked by TEMP_SENSOR_LOCK bit[0]

+ Observed Examples
Reference Description
Certain servers leave a write protection lock bit unset after boot, potentially allowing modification of parts of flash memory.
Chain: chipset has a race condition (CWE-362) between when an interrupt handler detects an attempt to write-enable the BIOS (in violation of the lock bit), and when the handler resets the write-enable bit back to 0, allowing attackers to issue BIOS writes during the timing window [REF-1237].
+ Weakness Ordinalities
Ordinality Description
Primary
(where the weakness exists independent of other weaknesses)
+ Detection Methods

Manual Analysis

Set the lock bit. Attempt to modify the information protected by the lock bit. If the information is changed, implement a design fix. Retest. Also, attempt to indirectly clear the lock bit or bypass it.

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf ViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries). 1343 Weaknesses in the 2021 CWE Most Important Hardware Weaknesses List
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1372 ICS Supply Chain: OT Counterfeit and Malicious Corruption
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1396 Comprehensive Categorization: Access Control
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ References
[REF-1237] CERT Coordination Center. "Intel BIOS locking mechanism contains race condition that enables write protection bypass". 2015-01-05. <https://www.kb.cert.org/vuls/id/766164/>.
+ Content History
+ Submissions
Submission Date Submitter Organization
2020-01-15
(CWE 4.0, 2020-02-24)
Arun Kanuparthi, Hareesh Khattri, Parbati Kumar Manna, Narasimha Kumar V Mangipudi Intel Corporation
+ Contributions
Contribution Date Contributor Organization
2021-10-20 Narasimha Kumar V Mangipudi Lattice Semiconductor
reviewed content changes
+ Modifications
Modification Date Modifier Organization
2020-08-20 CWE Content Team MITRE
updated Related_Attack_Patterns
2021-03-15 CWE Content Team MITRE
updated Maintenance_Notes
2021-10-28 CWE Content Team MITRE
updated Demonstrative_Examples, Description, Detection_Factors, Maintenance_Notes, Name, Observed_Examples, Potential_Mitigations, References, Relationships, Weakness_Ordinalities
2022-04-28 CWE Content Team MITRE
updated Related_Attack_Patterns, Relationships
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
+ Previous Entry Names
Change Date Previous Entry Name
2021-10-28 Improper Hardware Lock Protection for Security Sensitive Controls
Page Last Updated: November 19, 2024