Home > CWE List > CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection (4.16) |
|
CWE-1233: Security-Sensitive Hardware Controls with Missing Lock Bit Protection
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a register lock bit protection mechanism, but it does not ensure that the lock bit prevents modification of system registers or controls that perform changes to important hardware system configuration.
Integrated circuits and hardware intellectual properties (IPs) might provide device configuration controls that need to be programmed after device power reset by a trusted firmware or software module, commonly set by BIOS/bootloader. After reset, there can be an expectation that the controls cannot be used to perform any further modification. This behavior is commonly implemented using a trusted lock bit, which can be set to disable writes to a protected set of registers or address regions. The lock protection is intended to prevent modification of certain system configuration (e.g., memory/memory protection unit configuration). However, if the lock bit does not effectively write-protect all system registers or controls that could modify the protected system configuration, then an adversary may be able to use software to access the registers/controls and modify the protected hardware configuration. ![]()
![]() ![]()
![]() ![]()
![]()
![]() Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 Consider the example design below for a digital thermal sensor that detects overheating of the silicon and triggers system shutdown. The system critical temperature limit (CRITICAL_TEMP_LIMIT) and thermal sensor calibration (TEMP_SENSOR_CALIB) data have to be programmed by the firmware. (bad code)
Example Language: Other
In this example note that only the CRITICAL_TEMP_LIMIT register is protected by the TEMP_SENSOR_LOCK bit, while the security design intent is to protect any modification of the critical temperature detection and response. The response of the system, if the system heats to a critical temperature, is controlled by TEMP_HW_SHUTDOWN bit [1], which is not lockable. Also, the TEMP_SENSOR_CALIB register is not protected by the lock bit. By modifying the temperature sensor calibration, the conversion of the sensor data to a degree centigrade can be changed, such that the current temperature will never be detected to exceed critical temperature value programmed by the protected lock. Similarly, by modifying the TEMP_HW_SHUTDOWN.Enable bit, the system response detection of the current temperature exceeding critical temperature can be disabled. (good code)
Change TEMP_HW_SHUTDOWN and TEMP_SENSOR_CALIB controls to be locked by TEMP_SENSOR_LOCK.
![]()
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |