CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-1234: Hardware Internal or Debug Modes Allow Override of Locks (4.16)  
ID

CWE-1234: Hardware Internal or Debug Modes Allow Override of Locks

Weakness ID: 1234
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
System configuration protection may be bypassed during debug mode.
+ Extended Description

Device configuration controls are commonly programmed after a device power reset by a trusted firmware or software module (e.g., BIOS/bootloader) and then locked from any further modification. This is commonly implemented using a trusted lock bit, which when set, disables writes to a protected set of registers or address regions. The lock protection is intended to prevent modification of certain system configuration (e.g., memory/memory protection unit configuration). If debug features supported by hardware or internal modes/system states are supported in the hardware design, modification of the lock protection may be allowed allowing access and modification of configuration information.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Access Control

Technical Impact: Bypass Protection Mechanism

Bypass of lock bit allows access and modification of system configuration even when the lock bit is set.
High
+ Potential Mitigations

Phases: Architecture and Design; Implementation; Testing

  • Security Lock bit protections should be reviewed for any bypass/override modes supported.
  • Any supported override modes either should be removed or protected using authenticated debug modes.
  • Security lock programming flow and lock properties should be tested in pre-silicon and post-silicon testing.

Effectiveness: High

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 667 Improper Locking
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1199 General Circuit and Logic Design Concerns
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1207 Debug and Test Problems
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Operating Systems

Class: Not OS-Specific (Undetermined Prevalence)

Architectures

Class: Not Architecture-Specific (Undetermined Prevalence)

Technologies

Class: Not Technology-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

For example, consider the example Locked_override_register example. This register module supports a lock mode that blocks any writes after lock is set to 1.
However, it also allows override of the lock protection when scan_mode or debug_unlocked modes are active.

(bad code)
Example Language: Verilog 
module Locked_register_example
(
input [15:0] Data_in,
input Clk,
input resetn,
input write,
input Lock,
input scan_mode,
input debug_unlocked,
output reg [15:0] Data_out
);

reg lock_status;

always @(posedge Clk or negedge resetn)
if (~resetn) // Register is reset resetn
begin
lock_status <= 1'b0;
end
else if (Lock)
begin
lock_status <= 1'b1;
end
else if (~Lock)
begin
lock_status <= lock_status
end
always @(posedge Clk or negedge resetn)
if (~resetn) // Register is reset resetn
begin
Data_out <= 16'h0000;
end
else if (write & (~lock_status | scan_mode | debug_unlocked) ) // Register protected by Lock bit input, overrides supported for scan_mode & debug_unlocked
begin
Data_out <= Data_in;
end
else if (~write)
begin
Data_out <= Data_out;
end
endmodule

If either the scan_mode or the debug_unlocked modes can be triggered by software, then the lock protection may be bypassed.

(good code)
 
Either remove the debug and scan mode overrides or protect enabling of these modes so that only trusted and authorized users may enable these modes.

Example 2

The following example code [REF-1375] is taken from the register lock security peripheral of the HACK@DAC'21 buggy OpenPiton SoC. It demonstrates how to lock read or write access to security-critical hardware registers (e.g., crypto keys, system integrity code, etc.). The configuration to lock all the sensitive registers in the SoC is managed through the reglk_mem registers. These reglk_mem registers are reset when the hardware powers up and configured during boot up. Malicious users, even with kernel-level software privilege, do not get access to the sensitive contents that are locked down. Hence, the security of the entire system can potentially be compromised if the register lock configurations are corrupted or if the register locks are disabled.

(bad code)
Example Language: Verilog 
...
always @(posedge clk_i)
begin
if(~(rst_ni && ~jtag_unlock && ~rst_9))
begin
for (j=0; j < 6; j=j+1) begin
reglk_mem[j] <= 'h0;
end
end
...

The example code [REF-1375] illustrates an instance of a vulnerable implementation of register locks in the SoC. In this flawed implementation [REF-1375], the reglk_mem registers are also being reset when the system enters debug mode (indicated by the jtag_unlock signal). Consequently, users can simply put the processor in debug mode to access sensitive contents that are supposed to be protected by the register lock feature.

This can be mitigated by excluding debug mode signals from the reset logic of security-critical register locks as demonstrated in the following code snippet [REF-1376].

(good code)
Example Language: Verilog 
...
always @(posedge clk_i)
begin
if(~(rst_ni && ~rst_9))
begin
for (j=0; j < 6; j=j+1) begin
reglk_mem[j] <= 'h0;
end
end
...

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1401 Comprehensive Categorization: Concurrency
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Content History
+ Submissions
Submission Date Submitter Organization
2020-01-15
(CWE 4.0, 2020-02-24)
Arun Kanuparthi, Hareesh Khattri, Parbati Kumar Manna, Narasimha Kumar V Mangipudi Intel Corporation
+ Contributions
Contribution Date Contributor Organization
2023-11-07 Chen Chen, Rahul Kande, Jeyavijayan Rajendran Texas A&M University
suggested demonstrative example
2023-11-07 Shaza Zeitouni, Mohamadreza Rostami, Ahmad-Reza Sadeghi Technical University of Darmstadt
suggested demonstrative example
+ Modifications
Modification Date Modifier Organization
2020-08-20 CWE Content Team MITRE
updated Common_Consequences, Demonstrative_Examples, Description, Modes_of_Introduction, Potential_Mitigations, Related_Attack_Patterns
2022-04-28 CWE Content Team MITRE
updated Related_Attack_Patterns
2022-10-13 CWE Content Team MITRE
updated Demonstrative_Examples
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content Team MITRE
updated Demonstrative_Examples, References
Page Last Updated: November 19, 2024