CWE-1243: Sensitive Non-Volatile Information Not Protected During Debug
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterSeveral security-sensitive values are programmed into fuses to be used during early-boot flows or later at runtime. Examples of these security-sensitive values include root keys, encryption keys, manufacturing-specific information, chip-manufacturer-specific information, and original-equipment-manufacturer (OEM) data. After the chip is powered on, these values are sensed from fuses and stored in temporary locations such as registers and local memories. These locations are typically access-control protected from untrusted agents capable of accessing them. Even to trusted agents, only read-access is provided. However, these locations are not blocked during debug operations, allowing a user to access this sensitive information. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Class: Not Technology-Specific (Undetermined Prevalence) Example 1 Sensitive manufacturing data (such as die information) are stored in fuses. When the chip powers on, these values are read from the fuses and stored in microarchitectural registers. These registers are only given read access to trusted software running on the core. Untrusted software running on the core is not allowed to access these registers. (bad code)
Example Language: Other
All microarchitectural registers in this chip can be accessed through the debug interface. As a result, even an untrusted debugger can access this data and retrieve sensitive manufacturing data.
(good code)
Registers used to store sensitive values read from fuses should be blocked during debug. These registers should be disconnected from the debug interface.
Example 2 The example code below is taken from one of the AES cryptographic accelerators of the HACK@DAC'21 buggy OpenPiton SoC [REF-1366]. The operating system (OS) uses three AES keys to encrypt and decrypt sensitive data using this accelerator. These keys are sensitive data stored in fuses. The security of the OS will be compromised if any of these AES keys are leaked. During system bootup, these AES keys are sensed from fuses and stored in temporary hardware registers of the AES peripheral. Access to these temporary registers is disconnected during the debug state to prevent them from leaking through debug access. In this example (see the vulnerable code source), the registers key0, key1, and key2 are used to store the three AES keys (which are accessed through key_big0, key_big1, and key_big2 signals). The OS selects one of these three keys through the key_big signal, which is used by the AES engine. (bad code)
Example Language: Verilog
...
assign key_big0 = debug_mode_i ? 192'b0 : {key0[0], key0[1], key0[2], key0[3], key0[4], key0[5]}; assign key_big1 = debug_mode_i ? 192'b0 : {key1[0], key1[1], key1[2], key1[3], key1[4], key1[5]}; assign key_big2 = {key2[0], key2[1], key2[2], key2[3], key2[4], key2[5]}; ... assign key_big = key_sel[1] ? key_big2 : ( key_sel[0] ? key_big1 : key_big0 ); ... The above code illustrates an instance of a vulnerable implementation for blocking AES key mechanism when the system is in debug mode (i.e., when debug_mode_i is asserted). During debug mode, key accesses through key_big0 and key_big1 are effectively disconnected, as their values are set to zero. However, the key accessed via the key_big2 signal remains accessible, creating a potential pathway for sensitive fuse data leakage, specifically AES key2, during debug mode. Furthermore, even though it is not strictly necessary to disconnect the key_big signal when entering debug mode (since disconnecting key_big0, key_big1, and key_big2 will inherently disconnect key_big), it is advisable, in line with the defense-in-depth strategy, to also sever the connection to key_big. This additional security measure adds an extra layer of protection and safeguards the AES keys against potential future modifications to the key_big logic. To mitigate this, disconnect access through key_big2 and key_big during debug mode [REF-1367]. (good code)
Example Language: Verilog
...
assign key_big0 = debug_mode_i ? 192'b0 : {key0[0], key0[1], key0[2], key0[3], key0[4], key0[5]}; assign key_big1 = debug_mode_i ? 192'b0 : {key1[0], key1[1], key1[2], key1[3], key1[4], key1[5]}; assign key_big2 = debug_mode_i ? 192'b0 : {key2[0], key2[1], key2[2], key2[3], key2[4], key2[5]}; ... assign key_big = debug_mode_i ? 192'b0 : ( key_sel[1] ? key_big2 : ( key_sel[0] ? key_big1 : key_big0 ) ); ...
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |