| CWE-130: Improper Handling of Length Parameter Inconsistency
 View customized information: For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
	
	
		
        	For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
	
	
		
        	For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record).  Example: tool developers, security researchers.
	
	
			
        	For users who wish to see all available information for the CWE/CAPEC entry.
	
	
		
        	For users who want to customize what details are displayed. 
    ×
     Edit Custom FilterThe product parses a formatted message or structure, but it does not handle or incorrectly handles a length field that is inconsistent with the actual length of the associated data. 
                If an attacker can manipulate the length parameter associated with an input such that it is inconsistent with the actual length of the input, this can be leveraged to cause the target application to behave in unexpected, and possibly, malicious ways. One of the possible motives for doing so is to pass in arbitrarily large input to the application. Another possible motivation is the modification of application state by including invalid data for subsequent properties of the application. Such weaknesses commonly lead to attacks such as buffer overflows and execution of arbitrary code.
              This table specifies different individual consequences
                        associated with the weakness. The Scope identifies the application security area that is
                        violated, while the Impact describes the negative technical impact that arises if an
                        adversary succeeds in exploiting this weakness. The Likelihood provides information about
                        how likely the specific consequence is expected to be seen relative to the other
                        consequences in the list. For example, there may be high likelihood that a weakness will be
                        exploited to achieve a certain impact, but a low likelihood that it will be exploited to
                        achieve a different impact. 
 
  This table shows the weaknesses and high level categories that are related to this
                            weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
                            similar items that may exist at higher and lower levels of abstraction. In addition,
                            relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
                            may want to explore.  Relevant to the view "Research Concepts" (View-1000) 
  Relevant to the view "Software Development" (View-699) 
  Relevant to the view "CISQ Quality Measures (2020)" (View-1305) 
  Relevant to the view "CISQ Data Protection Measures" (View-1340) 
  The different Modes of Introduction provide information
                        about how and when this
                        weakness may be introduced. The Phase identifies a point in the life cycle at which
                        introduction
                        may occur, while the Note provides a typical scenario related to introduction during the
                        given
                        phase. 
  This listing shows possible areas for which the given
                        weakness could appear. These
                        may be for specific named Languages, Operating Systems, Architectures, Paradigms,
                        Technologies,
                        or a class of such platforms. The platform is listed along with how frequently the given
                        weakness appears for that instance. 
 Example 1 In the following C/C++ example the method processMessageFromSocket() will get a message from a socket, placed into a buffer, and will parse the contents of the buffer into a structure that contains the message length and the message body. A for loop is used to copy the message body into a local character string which will be passed to another method for processing. (bad code) 
                                    
                                    Example Language: C 
                                    
                                 int processMessageFromSocket(int socket) { int success; char buffer[BUFFER_SIZE]; char message[MESSAGE_SIZE]; // get message from socket and store into buffer //Ignoring possibliity that buffer > BUFFER_SIZE if (getMessage(socket, buffer, BUFFER_SIZE) > 0) { // place contents of the buffer into message structure ExMessage *msg = recastBuffer(buffer); // copy message body into string for processing int index; for (index = 0; index < msg->msgLength; index++) { message[index] = msg->msgBody[index];} message[index] = '\0'; // process message success = processMessage(message); return success; However, the message length variable (msgLength) from the structure is used as the condition for ending the for loop without validating that msgLength accurately reflects the actual length of the message body (CWE-606). If msgLength indicates a length that is longer than the size of a message body (CWE-130), then this can result in a buffer over-read by reading past the end of the buffer (CWE-126). Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry. 
 
  This MemberOf Relationships table shows additional CWE Categories and Views that
                                reference this weakness as a member. This information is often useful in understanding where a
                                weakness fits within the context of external information sources. 
 
 
 
 More information is available — Please edit the custom filter or select a different filter. | 
| Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. | ||
 
	                