CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.14)  
ID

CWE-130: Improper Handling of Length Parameter Inconsistency

Weakness ID: 130
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product parses a formatted message or structure, but it does not handle or incorrectly handles a length field that is inconsistent with the actual length of the associated data.
+ Extended Description
If an attacker can manipulate the length parameter associated with an input such that it is inconsistent with the actual length of the input, this can be leveraged to cause the target application to behave in unexpected, and possibly, malicious ways. One of the possible motives for doing so is to pass in arbitrarily large input to the application. Another possible motivation is the modification of application state by including invalid data for subsequent properties of the application. Such weaknesses commonly lead to attacks such as buffer overflows and execution of arbitrary code.
+ Alternate Terms
length manipulation
length tampering
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.240Improper Handling of Inconsistent Structural Elements
CanPrecedeBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.805Buffer Access with Incorrect Length Value
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.19Data Processing Errors
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.119Improper Restriction of Operations within the Bounds of a Memory Buffer
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.119Improper Restriction of Operations within the Bounds of a Memory Buffer
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

C (Sometimes Prevalent)

C++ (Sometimes Prevalent)

Class: Not Language-Specific (Undetermined Prevalence)

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Confidentiality
Integrity

Technical Impact: Read Memory; Modify Memory; Varies by Context

+ Demonstrative Examples

Example 1

In the following C/C++ example the method processMessageFromSocket() will get a message from a socket, placed into a buffer, and will parse the contents of the buffer into a structure that contains the message length and the message body. A for loop is used to copy the message body into a local character string which will be passed to another method for processing.

(bad code)
Example Language:
int processMessageFromSocket(int socket) {
int success;

char buffer[BUFFER_SIZE];
char message[MESSAGE_SIZE];

// get message from socket and store into buffer

//Ignoring possibliity that buffer > BUFFER_SIZE
if (getMessage(socket, buffer, BUFFER_SIZE) > 0) {

// place contents of the buffer into message structure
ExMessage *msg = recastBuffer(buffer);

// copy message body into string for processing
int index;
for (index = 0; index < msg->msgLength; index++) {
message[index] = msg->msgBody[index];
}
message[index] = '\0';

// process message
success = processMessage(message);
}
return success;
}

However, the message length variable from the structure is used as the condition for ending the for loop without validating that the message length variable accurately reflects the length of the message body (CWE-606). This can result in a buffer over-read (CWE-125) by reading from memory beyond the bounds of the buffer if the message length variable indicates a length that is longer than the size of a message body (CWE-130).

+ Observed Examples
ReferenceDescription
Chain: "Heartbleed" bug receives an inconsistent length parameter (CWE-130) enabling an out-of-bounds read (CWE-126), returning memory that could include private cryptographic keys and other sensitive data.
Web application firewall consumes excessive memory when an HTTP request contains a large Content-Length value but no POST data.
Buffer overflow in internal string handling routine allows remote attackers to execute arbitrary commands via a length argument of zero or less, which disables the length check.
Web server allows remote attackers to cause a denial of service via an HTTP request with a content-length value that is larger than the size of the request, which prevents server from timing out the connection.
Service does not properly check the specified length of a cookie, which allows remote attackers to execute arbitrary commands via a buffer overflow, or brute force authentication by using a short cookie length.
Traffic analyzer allows remote attackers to cause a denial of service and possibly execute arbitrary code via invalid IPv4 or IPv6 prefix lengths, possibly triggering a buffer overflow.
Chat client allows remote attackers to cause a denial of service or execute arbitrary commands via a JPEG image containing a comment with an illegal field length of 1.
Server allows remote attackers to cause a denial of service and possibly execute arbitrary code via a negative Content-Length HTTP header field causing a heap-based buffer overflow.
Help program allows remote attackers to execute arbitrary commands via a heap-based buffer overflow caused by a .CHM file with a large length field
Name services does not properly validate the length of certain packets, which allows attackers to cause a denial of service and possibly execute arbitrary code. Can overlap zero-length issues
Policy manager allows remote attackers to cause a denial of service (memory consumption and crash) and possibly execute arbitrary code via an HTTP POST request with an invalid Content-Length value.
Heap-based buffer overflow in library allows remote attackers to execute arbitrary code via a modified record length field in an SSLv2 client hello message.
When domain logons are enabled, server allows remote attackers to cause a denial of service via a SAM_UAS_CHANGE request with a length value that is larger than the number of structures that are provided.
Multiple SSH2 servers and clients do not properly handle packets or data elements with incorrect length specifiers, which may allow remote attackers to cause a denial of service or possibly execute arbitrary code.
Server allows remote attackers to cause a denial of service (CPU and memory exhaustion) via a POST request with a Content-Length header set to -1.
Multiple buffer overflows in xml library that may allow remote attackers to execute arbitrary code via long URLs.
Application does not properly validate the length of a value that is saved in a session file, which allows remote attackers to execute arbitrary code via a malicious session file (.ht), web site, or Telnet URL contained in an e-mail message, triggering a buffer overflow.
Server allows remote attackers to cause a denial of service via a remote password array with an invalid length, which triggers a heap-based buffer overflow.
Product allows remote attackers to cause a denial of service and possibly execute arbitrary code via an SMB packet that specifies a smaller buffer length than is required.
Server allows remote attackers to execute arbitrary code via a LoginExt packet for a Cleartext Password User Authentication Method (UAM) request with a PathName argument that includes an AFPName type string that is longer than the associated length field.
PDF viewer allows remote attackers to execute arbitrary code via a PDF file with a large /Encrypt /Length keyLength value.
SVN client trusts the length field of SVN protocol URL strings, which allows remote attackers to cause a denial of service and possibly execute arbitrary code via an integer overflow that leads to a heap-based buffer overflow.
Is effectively an accidental double increment of a counter that prevents a length check conditional from exiting a loop.
Length field of a request not verified.
Buffer overflow by modifying a length value.
+ Potential Mitigations

Phase: Implementation

When processing structured incoming data containing a size field followed by raw data, ensure that you identify and resolve any inconsistencies between the size field and the actual size of the data.

Phase: Implementation

Do not let the user control the size of the buffer.

Phase: Implementation

Validate that the length of the user-supplied data is consistent with the buffer size.
+ Weakness Ordinalities
OrdinalityDescription
Primary
(where the weakness exists independent of other weaknesses)
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.990SFP Secondary Cluster: Tainted Input to Command
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1407Comprehensive Categorization: Improper Neutralization
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Relationship

This probably overlaps other categories including zero-length issues.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERLength Parameter Inconsistency
Software Fault PatternsSFP24Tainted Input to Command
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Potential_Mitigations, Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Applicable_Platforms, Description, Name, Relationships, Observed_Example, Relationship_Notes, Taxonomy_Mappings, Weakness_Ordinalities
2009-03-10CWE Content TeamMITRE
updated Description, Name
2009-12-28CWE Content TeamMITRE
updated Observed_Examples
2010-02-16CWE Content TeamMITRE
updated Description, Potential_Mitigations, Relationships
2010-12-13CWE Content TeamMITRE
updated Potential_Mitigations
2011-03-29CWE Content TeamMITRE
updated Demonstrative_Examples
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2011-06-27CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Observed_Examples, Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2013-07-17CWE Content TeamMITRE
updated Type
2014-06-23CWE Content TeamMITRE
updated Observed_Examples
2014-07-30CWE Content TeamMITRE
updated Relationships
2017-01-19CWE Content TeamMITRE
updated Type
2017-11-08CWE Content TeamMITRE
updated Applicable_Platforms, Causal_Nature, Demonstrative_Examples
2020-02-24CWE Content TeamMITRE
updated Relationships
2020-06-25CWE Content TeamMITRE
updated Common_Consequences, Demonstrative_Examples
2020-08-20CWE Content TeamMITRE
updated Relationships
2020-12-10CWE Content TeamMITRE
updated Relationships
2022-10-13CWE Content TeamMITRE
updated Taxonomy_Mappings
2023-01-31CWE Content TeamMITRE
updated Description
2023-04-27CWE Content TeamMITRE
updated Relationships, Time_of_Introduction
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content TeamMITRE
updated Observed_Examples
+ Previous Entry Names
Change DatePrevious Entry Name
2008-09-09Length Parameter Inconsistency
2009-03-10Failure to Handle Length Parameter Inconsistency
Page Last Updated: February 29, 2024