CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-1323: Improper Management of Sensitive Trace Data (4.16)  
ID

CWE-1323: Improper Management of Sensitive Trace Data

Weakness ID: 1323
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
Trace data collected from several sources on the System-on-Chip (SoC) is stored in unprotected locations or transported to untrusted agents.
+ Extended Description

To facilitate verification of complex System-on-Chip (SoC) designs, SoC integrators add specific IP blocks that trace the SoC's internal signals in real-time. This infrastructure enables observability of the SoC's internal behavior, validation of its functional design, and detection of hardware and software bugs. Such tracing IP blocks collect traces from several sources on the SoC including the CPU, crypto coprocessors, and on-chip fabrics. Traces collected from these sources are then aggregated inside trace IP block and forwarded to trace sinks, such as debug-trace ports that facilitate debugging by external hardware and software debuggers.

Since these traces are collected from several security-sensitive sources, they must be protected against untrusted debuggers. If they are stored in unprotected memory, an untrusted software debugger can access these traces and extract secret information. Additionally, if security-sensitive traces are not tagged as secure, an untrusted hardware debugger might access them to extract confidential information.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Confidentiality

Technical Impact: Read Memory

An adversary can read secret values if they are captured in debug traces and stored unsafely.
+ Potential Mitigations

Phase: Implementation

Tag traces to indicate owner and debugging privilege level (designer, OEM, or end user) needed to access that trace.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Pillar Pillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things. 284 Improper Access Control
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Hardware Design" (CWE-1194)
Nature Type ID Name
MemberOf Category Category - a CWE entry that contains a set of other entries that share a common characteristic. 1207 Debug and Test Problems
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

Operating Systems

Class: Not OS-Specific (Undetermined Prevalence)

Architectures

Class: Not Architecture-Specific (Undetermined Prevalence)

Technologies

Class: System on Chip (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

In a SoC, traces generated from sources include security-sensitive IP blocks such as CPU (with tracing information such as instructions executed and memory operands), on-chip fabric (e.g., memory-transfer signals, transaction type and destination, and on-chip-firewall-error signals), power-management IP blocks (e.g., clock- and power-gating signals), and cryptographic coprocessors (e.g., cryptographic keys and intermediate values of crypto operations), among other non-security-sensitive IP blocks including timers and other functional blocks. The collected traces are then forwarded to the debug and trace interface used by the external hardware debugger.

(bad code)
Example Language: Other 
The traces do not have any privilege level attached to them. All collected traces can be viewed by any debugger (i.e., SoC designer, OEM debugger, or end user).
(good code)
Example Language: Other 
Some of the traces are SoC-design-house secrets, while some are OEM secrets. Few are end-user secrets and the rest are not security-sensitive. Tag all traces with the appropriate, privilege level at the source. The bits indicating the privilege level must be immutable in their transit from trace source to the final, trace sink. Debugger privilege level must be checked before providing access to traces.

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1396 Comprehensive Categorization: Access Control
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ References
[REF-1150] Jerry Backer, David Hely and Ramesh Karri. "Secure design-for-debug for Systems-on-Chip". 2015-10-06. <https://ieeexplore.ieee.org/document/7342418>.
[REF-1151] Jerry Backer, David Hely and Ramesh Karri. "Secure and Flexible Trace-Based Debugging of Systems-on-Chip". 2016-12. <https://dl.acm.org/doi/pdf/10.1145/2994601>. URL validated: 2023-04-07.
+ Content History
+ Submissions
Submission Date Submitter Organization
2020-07-20
(CWE 4.3, 2020-12-10)
Hareesh Khattri, Parbati K. Manna, and Arun Kanuparthi Intel Corporation
+ Modifications
Modification Date Modifier Organization
2021-10-28 CWE Content Team MITRE
updated Common_Consequences
2023-04-27 CWE Content Team MITRE
updated Relationships
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
Page Last Updated: November 19, 2024