CWE-1331: Improper Isolation of Shared Resources in Network On Chip (NoC)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe Network On Chip (NoC) does not isolate or incorrectly isolates its on-chip-fabric and internal resources such that they are shared between trusted and untrusted agents, creating timing channels.
Typically, network on chips (NoC) have many internal resources that are shared between packets from different trust domains. These resources include internal buffers, crossbars and switches, individual ports, and channels. The sharing of resources causes contention and introduces interference between differently trusted domains, which poses a security threat via a timing channel, allowing attackers to infer data that belongs to a trusted agent. This may also result in introducing network interference, resulting in degraded throughput and latency. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Hardware Design" (CWE-1194)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Operating Systems Class: Not OS-Specific (Undetermined Prevalence) Architectures Class: Not Architecture-Specific (Undetermined Prevalence) Technologies Security Hardware (Undetermined Prevalence) Class: Not Technology-Specific (Undetermined Prevalence) Example 1 Consider a NoC that implements a one-dimensional mesh network with four nodes. This supports two flows: Flow A from node 0 to node 3 (via node 1 and node 2) and Flow B from node 1 to node 2. Flows A and B share a common link between Node 1 and Node 2. Only one flow can use the link in each cycle. One of the masters to this NoC implements a cryptographic algorithm (RSA), and another master to the NoC is a core that can be exercised by an attacker. The RSA algorithm performs a modulo multiplication of two large numbers and depends on each bit of the secret key. The algorithm examines each bit in the secret key and only performs multiplication if the bit is 1. This algorithm is known to be prone to timing attacks. Whenever RSA performs multiplication, there is additional network traffic to the memory controller. One of the reasons for this is cache conflicts. Since this is a one-dimensional mesh, only one flow can use the link in each cycle. Also, packets from the attack program and the RSA program share the output port of the network-on-chip. This contention results in network interference, and the throughput and latency of one flow can be affected by the other flow's demand. (attack code)
The attacker runs a loop program on the core they control, and this causes a cache miss in every iteration for the RSA algorithm. Thus, by observing network-traffic bandwidth and timing, the attack program can determine when the RSA algorithm is doing a multiply operation (i.e., when the secret key bit is 1) and eventually extract the entire, secret key.
There may be different ways to fix this particular weakness. (good code)
Example Language: Other
Implement priority-based arbitration inside the NoC and have dedicated buffers or virtual channels for routing secret data from trusted agents.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |