CWE-1395: Dependency on Vulnerable Third-Party Component
Weakness ID: 1395
Vulnerability Mapping:
ALLOWEDThis CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes) Abstraction: ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
The product has a dependency on a third-party component that contains one or more known vulnerabilities.
Extended Description
Many products are large enough or complex enough that part of their functionality uses libraries, modules, or other intellectual property developed by third parties who are not the product creator. For example, even an entire operating system might be from a third-party supplier in some hardware products. Whether open or closed source, these components may contain publicly known vulnerabilities that could be exploited by adversaries to compromise the product.
Common Consequences
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Confidentiality Integrity Availability
Technical Impact: Varies by Context
The consequences vary widely, depending on the vulnerabilities that exist in the component; how those vulnerabilities can be "reached" by adversaries, as the exploitation paths and attack surface will vary depending on how the component is used; and the criticality of the privilege levels and features for which the product relies on the component.
Potential Mitigations
Phases: Requirements; Policy
In some industries such as healthcare [REF-1320] [REF-1322] or technologies such as the cloud [REF-1321], it might be unclear about who is responsible for applying patches for third-party vulnerabilities: the vendor, the operator/customer, or a separate service. Clarifying roles and responsibilities can be important to minimize confusion or unnecessary delay when third-party vulnerabilities are disclosed.
Phase: Requirements
Require a Bill of Materials for all components and sub-components of the product. For software, require a Software Bill of Materials (SBOM) [REF-1247] [REF-1311].
Phases: Architecture and Design; Implementation; Integration; Manufacturing
Maintain a Bill of Materials for all components and sub-components of the product. For software, maintain a Software Bill of Materials (SBOM). According to [REF-1247], "An SBOM is a formal, machine-readable inventory of software components and dependencies, information about those components, and their hierarchical relationships."
Phases: Operation; Patching and Maintenance
Actively monitor when a third-party component vendor announces vulnerability patches; fix the third-party component as soon as possible; and make it easy for operators/customers to obtain and apply the patch.
Phases: Operation; Patching and Maintenance
Continuously monitor changes in each of the product's components, especially when the changes indicate new vulnerabilities, end-of-life (EOL) plans, etc.
Relationships
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Architecture and Design
The product architect or designer might choose a component that is already known to contain vulnerabilities or has a high likelihood of containing vulnerabilities in the future.
Implementation
For reasons of compatibility or stability, developers might choose a third-party component, such as a library, that is already known to contain vulnerabilities.
Patching and Maintenance
Since all products contain vulnerabilities, over time, a third-party component will be discovered to have a vulnerability.
Applicable Platforms
This listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages
Class: Not Language-Specific (Undetermined Prevalence)
Operating Systems
Class: Not OS-Specific (Undetermined Prevalence)
Architectures
Class: Not Architecture-Specific (Undetermined Prevalence)
Technologies
Class: Not Technology-Specific (Undetermined Prevalence)
Demonstrative Examples
Example 1
The "SweynTooth" vulnerabilities in Bluetooth Low Energy (BLE) software development kits (SDK) were found to affect multiple Bluetooth System-on-Chip (SoC) manufacturers. These SoCs were used by many products such as medical devices, Smart Home devices, wearables, and other IoT devices. [REF-1314] [REF-1315]
Example 2
log4j, a Java-based logging framework, is used in a large number of products, with estimates in the range of 3 billion affected devices [REF-1317]. When the "log4shell" (CVE-2021-44228) vulnerability was initially announced, it was actively exploited for remote code execution, requiring urgent mitigation in many organizations. However, it was unclear how many products were affected, as Log4j would sometimes be part of a long sequence of transitive dependencies. [REF-1316]
Detection Methods
Automated Analysis
For software, use Software Composition Analysis (SCA) tools, which automatically analyze products to identify third-party dependencies. Often, SCA tools can be used to link with known vulnerabilities in the dependencies that they detect. There are commercial and open-source alternatives, such as OWASP Dependency-Check [REF-1312]. Many languages or frameworks have package managers with similar capabilities, such as npm audit for JavaScript, pip-audit for Python, govulncheck for Go, and many others. Dynamic methods can detect loading of third-party components.
Effectiveness: High
Note: Software Composition Analysis (SCA) tools face a number of technical challenges that can lead to false positives and false negatives. Dynamic methods have other technical challenges.
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
[REF-1315] Matheus E. Garbelini, Sudipta Chattopadhyay, Chundong Wang, Singapore University of Technology and Design. "Unleashing Mayhem over Bluetooth Low Energy". 2020-03-04.
<https://asset-group.github.io/disclosures/sweyntooth/>. URL validated: 2023-01-25.