CWE-335: Incorrect Usage of Seeds in Pseudo-Random Number Generator (PRNG)
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product uses a Pseudo-Random Number Generator (PRNG) but does not correctly manage seeds.
PRNGs are deterministic and, while their output appears random, they cannot actually create entropy. They rely on cryptographically secure and unique seeds for entropy so proper seeding is critical to the secure operation of the PRNG. Management of seeds could be broken down into two main areas:
PRNGs require a seed as input to generate a stream of numbers that are functionally indistinguishable from random numbers. While the output is, in many cases, sufficient for cryptographic uses, the output of any PRNG is directly determined by the seed provided as input. If the seed can be ascertained by a third party, the entire output of the PRNG can be made known to them. As such, the seed should be kept secret and should ideally not be able to be guessed. For example, the current time may be a poor seed. Knowing the approximate time the PRNG was seeded greatly reduces the possible key space. Seeds do not necessarily need to be unique, but reusing seeds may open up attacks if the seed is discovered. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
Relevant to the view "Architectural Concepts" (CWE-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Example 1 The following code uses a statistical PRNG to generate account IDs. (bad code)
Example Language: Java
private static final long SEED = 1234567890;
public int generateAccountID() { Random random = new Random(SEED); }return random.nextInt(); Because the program uses the same seed value for every invocation of the PRNG, its values are predictable, making the system vulnerable to attack. Example 2 Both of these examples use a statistical PRNG seeded with the current value of the system clock to generate a random number: (bad code)
Example Language: Java
Random random = new Random(System.currentTimeMillis());
int accountID = random.nextInt(); (bad code)
Example Language: C
srand(time());
int randNum = rand(); An attacker can easily predict the seed used by these PRNGs, and so also predict the stream of random numbers generated. Note these examples also exhibit CWE-338 (Use of Cryptographically Weak PRNG). Example 3 This code grabs some random bytes and uses them for a seed in a PRNG, in order to generate a new cryptographic key. (bad code)
Example Language: Python
# getting 2 bytes of randomness for the seeding the PRNG
seed = os.urandom(2) random.seed(a=seed) key = random.getrandbits(128) Since only 2 bytes are used as a seed, an attacker will only need to guess 2^16 (65,536) values before being able to replicate the state of the PRNG.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Maintenance
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |