CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.15)  
ID

CWE-343: Predictable Value Range from Previous Values

Weakness ID: 343
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product's random number generator produces a series of values which, when observed, can be used to infer a relatively small range of possibilities for the next value that could be generated.
+ Extended Description
The output of a random number generator should not be predictable based on observations of previous values. In some cases, an attacker cannot predict the exact value that will be produced next, but can narrow down the possibilities significantly. This reduces the amount of effort to perform a brute force attack. For example, suppose the product generates random numbers between 1 and 100, but it always produces a larger value until it reaches 100. If the generator produces an 80, then the attacker knows that the next value will be somewhere between 81 and 100. Instead of 100 possibilities, the attacker only needs to consider 20.
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Other

Technical Impact: Varies by Context

+ Potential Mitigations
Increase the entropy used to seed a PRNG.

Phases: Architecture and Design; Requirements

Strategy: Libraries or Frameworks

Use products or modules that conform to FIPS 140-2 [REF-267] to avoid obvious entropy problems. Consult FIPS 140-2 Annex C ("Approved Random Number Generators").

Phase: Implementation

Use a PRNG that periodically re-seeds itself using input from high-quality sources, such as hardware devices with high entropy. However, do not re-seed too frequently, or else the entropy source might block.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.340Generation of Predictable Numbers or Identifiers
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Software Development" (CWE-699)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1213Random Number Issues
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Architecture and Design
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.905SFP Primary Cluster: Predictability
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1414Comprehensive Categorization: Randomness
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Maintenance

As of CWE 4.5, terminology related to randomness, entropy, and predictability can vary widely. Within the developer and other communities, "randomness" is used heavily. However, within cryptography, "entropy" is distinct, typically implied as a measurement. There are no commonly-used definitions, even within standards documents and cryptography papers. Future versions of CWE will attempt to define these terms and, if necessary, distinguish between them in ways that are appropriate for different communities but do not reduce the usability of CWE for mapping, understanding, or other scenarios.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERPredictable Value Range from Previous Values
+ References
[REF-267] Information Technology Laboratory, National Institute of Standards and Technology. "SECURITY REQUIREMENTS FOR CRYPTOGRAPHIC MODULES". 2001-05-25. <https://csrc.nist.gov/csrc/media/publications/fips/140/2/final/documents/fips1402.pdf>. URL validated: 2023-04-07.
[REF-320] Michal Zalewski. "Strange Attractors and TCP/IP Sequence Number Analysis". 2001. <https://lcamtuf.coredump.cx/oldtcp/tcpseq.html>. URL validated: 2023-04-07.
[REF-44] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security". "Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2006-07-19
(CWE Draft 3, 2006-07-19)
PLOVER
+ Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2008-10-14CWE Content TeamMITRE
updated Description
2009-03-10CWE Content TeamMITRE
updated Potential_Mitigations
2009-12-28CWE Content TeamMITRE
updated Potential_Mitigations
2010-06-21CWE Content TeamMITRE
updated Potential_Mitigations
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2011-06-27CWE Content TeamMITRE
updated Common_Consequences
2011-09-13CWE Content TeamMITRE
updated Potential_Mitigations, References
2012-05-11CWE Content TeamMITRE
updated References, Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2017-11-08CWE Content TeamMITRE
updated Applicable_Platforms, References
2020-02-24CWE Content TeamMITRE
updated Relationships
2021-07-20CWE Content TeamMITRE
updated Maintenance_Notes
2023-01-31CWE Content TeamMITRE
updated Description
2023-04-27CWE Content TeamMITRE
updated References, Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
Page Last Updated: July 16, 2024