CWE-340: Generation of Predictable Numbers or Identifiers
Weakness ID: 340
Abstraction: Class Structure: Simple
Presentation Filter:
Description
The product uses a scheme that generates numbers or identifiers that are more predictable than required.
Relationships
This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
Base - a weakness
that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase
Note
Architecture and Design
Implementation
Common Consequences
This table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Other
Technical Impact: Varies by Context
Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
As of CWE 4.5, terminology related to randomness, entropy, and
predictability can vary widely. Within the developer and other
communities, "randomness" is used heavily. However, within
cryptography, "entropy" is distinct, typically implied as a
measurement. There are no commonly-used definitions, even within
standards documents and cryptography papers. Future versions of
CWE will attempt to define these terms and, if necessary,
distinguish between them in ways that are appropriate for
different communities but do not reduce the usability of CWE for
mapping, understanding, or other scenarios.
Taxonomy Mappings
Mapped Taxonomy Name
Node ID
Fit
Mapped Node Name
PLOVER
Predictability problems
WASC
11
Brute Force
References
[REF-44] Michael Howard, David LeBlanc
and John Viega. "24 Deadly Sins of Software Security". "Sin 20: Weak Random Numbers." Page 299. McGraw-Hill. 2010.
Content History
Submissions
Submission Date
Submitter
Organization
2006-07-19
PLOVER
Modifications
Modification Date
Modifier
Organization
2008-07-01
Eric Dalci
Cigital
updated Time_of_Introduction
2008-09-08
CWE Content Team
MITRE
updated Relationships, Taxonomy_Mappings
2010-02-16
CWE Content Team
MITRE
updated Taxonomy_Mappings
2011-06-01
CWE Content Team
MITRE
updated Common_Consequences
2011-06-27
CWE Content Team
MITRE
updated Common_Consequences
2012-05-11
CWE Content Team
MITRE
updated References, Relationships
2020-02-24
CWE Content Team
MITRE
updated Description, Name, Relationships
2021-07-20
CWE Content Team
MITRE
updated Maintenance_Notes
2021-10-28
CWE Content Team
MITRE
updated Relationships
Previous Entry Names
Change Date
Previous Entry Name
2020-02-24
Predictability Problems
More information is available — Please select a different filter.