CWE-359: Exposure of Private Personal Information to an Unauthorized Actor
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThis table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
Relevant to the view "Architectural Concepts" (CWE-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Technologies Class: Mobile (Undetermined Prevalence) Example 1 The following code contains a logging statement that tracks the contents of records added to a database by storing them in a log file. Among other values that are stored, the getPassword() function returns the user-supplied plaintext password associated with the account. (bad code)
Example Language: C#
pass = GetPassword();
... dbmsLog.WriteLine(id + ":" + pass + ":" + type + ":" + tstamp); The code in the example above logs a plaintext password to the filesystem. Although many developers trust the filesystem as a safe storage location for data, it should not be trusted implicitly, particularly when privacy is a concern. Example 2 This code uses location to determine the user's current US State location. First the application must declare that it requires the ACCESS_FINE_LOCATION permission in the application's manifest.xml: (bad code)
Example Language: XML
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
During execution, a call to getLastLocation() will return a location based on the application's location permissions. In this case the application has permission for the most accurate location possible: (bad code)
Example Language: Java
locationClient = new LocationClient(this, this, this);
locationClient.connect(); Location userCurrLocation; userCurrLocation = locationClient.getLastLocation(); deriveStateFromCoords(userCurrLocation); While the application needs this information, it does not need to use the ACCESS_FINE_LOCATION permission, as the ACCESS_COARSE_LOCATION permission will be sufficient to identify which US state the user is in. Example 3 In 2004, an employee at AOL sold approximately 92 million private customer e-mail addresses to a spammer marketing an offshore gambling web site [REF-338]. In response to such high-profile exploits, the collection and management of private data is becoming increasingly regulated.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Other There are many types of sensitive information that products must protect from attackers, including system data, communications, configuration, business secrets, intellectual property, and an individual's personal (private) information. Private personal information may include a password, phone number, geographic location, personal messages, credit card number, etc. Private information is important to consider whether the person is a user of the product, or part of a data set that is processed by the product. An exposure of private information does not necessarily prevent the product from working properly, and in fact the exposure might be intended by the developer, e.g. as part of data sharing with other organizations. However, the exposure of personal private information can still be undesirable or explicitly prohibited by law or regulation. Some types of private information include:
Some of this information may be characterized as PII (Personally Identifiable Information), Protected Health Information (PHI), etc. Categories of private information may overlap or vary based on the intended usage or the policies and practices of a particular industry. Sometimes data that is not labeled as private can have a privacy implication in a different context. For example, student identification numbers are usually not considered private because there is no explicit and publicly-available mapping to an individual student's personal information. However, if a school generates identification numbers based on student social security numbers, then the identification numbers should be considered private. Maintenance
This entry overlaps many other entries that are not organized around the kind of sensitive information that is exposed. However, because privacy is treated with such importance due to regulations and other factors, and it may be useful for weakness-finding tools to highlight capabilities that detect personal private information instead of system information, it is not clear whether - and how - this entry should be deprecated.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |