CWE

Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.2)  
ID

CWE-200: Exposure of Sensitive Information to an Unauthorized Actor

Weakness ID: 200
Abstraction: Class
Structure: Simple
Status: Draft
Presentation Filter:
+ Description
The product exposes sensitive information to an actor that is not explicitly authorized to have access to that information.
+ Extended Description

There are many different kinds of mistakes that introduce information exposures. The severity of the error can range widely, depending on the context in which the product operates, the type of sensitive information that is revealed, and the benefits it may provide to an attacker. Some kinds of sensitive information include:

  • private, personal information, such as personal messages, financial data, health records, geographic location, or contact details
  • system status and environment, such as the operating system and installed packages
  • business secrets and intellectual property
  • network status and configuration
  • the product's own code or internal state
  • metadata, e.g. logging of connections or message headers
  • indirect information, such as a discrepancy between two internal operations that can be observed by an outsider

Information might be sensitive to different parties, each of which may have their own expectations for whether the information should be protected. These parties include:

  • the product's own users
  • people or organizations whose information is created or used by the product, even if they are not direct product users
  • the product's administrators, including the admins of the system(s) and/or networks on which the product operates
  • the developer

Information exposures can occur in different ways:

  • the code explicitly inserts sensitive information into resources or messages that are intentionally made accessible to unauthorized actors, but should not contain the information - i.e., the information should have been "scrubbed" or "sanitized"
  • a different weakness or mistake indirectly inserts the sensitive information into resources, such as a web script error revealing the full system path of the program.
  • the code manages resources that intentionally contain sensitive information, but the resources are unintentionally made accessible to unauthorized actors. In this case, the information exposure is resultant - i.e., a different weakness enabled the access to the information in the first place.

It is common practice to describe any loss of confidentiality as an "information exposure," but this can lead to overuse of CWE-200 in CWE mapping. From the CWE perspective, loss of confidentiality is a technical impact that can arise from dozens of different weaknesses, such as insecure file permissions or out-of-bounds read. CWE-200 and its lower-level descendants are intended to cover the mistakes that occur in behaviors that explicitly manage, store, transfer, or cleanse sensitive information.

+ Alternate Terms
Information Disclosure:
This term is frequently used in vulnerability advisories to describe a consequence or technical impact, for any vulnerability that has a loss of confidentiality. Often, CWE-200 can be misused to represent the loss of confidentiality, even when the mistake - i.e., the weakness - is not directly related to the mishandling of the information itself, such as an out-of-bounds read that accesses sensitive memory contents; here, the out-of-bounds read is the primary weakness, not the disclosure of the memory. In addition, this phrase is also used frequently in policies and legal documents, but it does not refer to any disclosure of security-relevant information.
Information Leak:
This is a frequently used term, however the "leak" term has multiple uses within security. In some cases it deals with the accidental exposure of information from a different weakness, but in other cases (such as "memory leak"), this deals with improper tracking of resources, which can lead to exhaustion. As a result, CWE is actively avoiding usage of the "leak" term.
+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.668Exposure of Resource to Wrong Sphere
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.201Insertion of Sensitive Information Into Sent Data
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.203Observable Differences in Behavior to Error Inputs
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.209Generation of Error Message Containing Sensitive Information
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.213Exposure of Sensitive Information Due to Incompatible Policies
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.215Insertion of Sensitive Information Into Debugging Code
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.359Exposure of Private Personal Information to an Unauthorized Actor
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.497Exposure of Sensitive System Information to an Unauthorized Control Sphere
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.538Insertion of Sensitive Information into Externally-Accessible File or Directory
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.1243Sensitive Non-Volatile Information Not Protected During Debug
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.1258Exposure of Sensitive System Information Due to Uncleared Debug Information
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.1273Device Unlock Credential Sharing
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.1295Debug Messages Revealing Unnecessary Information
CanFollowVariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.498Cloneable Class Containing Sensitive Information
CanFollowVariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.499Serializable Class Containing Sensitive Data
CanFollowBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.1272Sensitive Information Uncleared Before Debug/Power State Transition
+ Relevant to the view "Weaknesses for Simplified Mapping of Published Vulnerabilities" (CWE-1003)
NatureTypeIDName
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.203Observable Differences in Behavior to Error Inputs
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.209Generation of Error Message Containing Sensitive Information
ParentOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.532Insertion of Sensitive Information into Log File
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

PhaseNote
Architecture and Design
Implementation
+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Language-Independent (Undetermined Prevalence)

Technologies

Class: Mobile (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Confidentiality

Technical Impact: Read Application Data

+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

The following code checks validity of the supplied username and password and notifies the user of a successful or failed login.

(bad code)
Example Language: Perl 
my $username=param('username');
my $password=param('password');

if (IsValidUsername($username) == 1)
{
if (IsValidPassword($username, $password) == 1)
{
print "Login Successful";
}
else
{
print "Login Failed - incorrect password";
}
}
else
{
print "Login Failed - unknown username";
}

In the above code, there are different messages for when an incorrect username is supplied, versus when the username is correct but the password is wrong. This difference enables a potential attacker to understand the state of the login function, and could allow an attacker to discover a valid username by trying different values until the incorrect password message is returned. In essence, this makes it easier for an attacker to obtain half of the necessary authentication credentials.

While this type of information may be helpful to a user, it is also useful to a potential attacker. In the above example, the message for both failed cases should be the same, such as:

(result)
 
"Login Failed - incorrect username or password"

Example 2

This code tries to open a database connection, and prints any exceptions that occur.

(bad code)
Example Language: Java 
try {
openDbConnection();
}
//print exception message that includes exception message and configuration file location
catch (Exception $e) {
echo 'Caught exception: ', $e->getMessage(), '\n';
echo 'Check credentials in config file at: ', $Mysql_config_location, '\n';
}

If an exception occurs, the printed message exposes the location of the configuration file the script is using. An attacker can use this information to target the configuration file (perhaps exploiting a Path Traversal weakness). If the file can be read, the attacker could gain credentials for accessing the database. The attacker may also be able to replace the file with a malicious one, causing the application to use an arbitrary database.

Example 3

In the example below, the method getUserBankAccount retrieves a bank account object from a database using the supplied username and account number to query the database. If an SQLException is raised when querying the database, an error message is created and output to a log file.

(bad code)
Example Language: Java 
public BankAccount getUserBankAccount(String username, String accountNumber) {
BankAccount userAccount = null;
String query = null;
try {
if (isAuthorizedUser(username)) {
query = "SELECT * FROM accounts WHERE owner = "
+ username + " AND accountID = " + accountNumber;
DatabaseManager dbManager = new DatabaseManager();
Connection conn = dbManager.getConnection();
Statement stmt = conn.createStatement();
ResultSet queryResult = stmt.executeQuery(query);
userAccount = (BankAccount)queryResult.getObject(accountNumber);
}
} catch (SQLException ex) {
String logMessage = "Unable to retrieve account information from database,\nquery: " + query;
Logger.getLogger(BankManager.class.getName()).log(Level.SEVERE, logMessage, ex);
}
return userAccount;
}

The error message that is created includes information about the database query that may contain sensitive information about the database or query logic. In this case, the error message will expose the table name and column names used in the database. This data could be used to simplify other attacks, such as SQL injection (CWE-89) to directly access the database.

Example 4

This code stores location information about the current user:

(bad code)
Example Language: Java 
locationClient = new LocationClient(this, this, this);
locationClient.connect();
currentUser.setLocation(locationClient.getLastLocation());
...

catch (Exception e) {
AlertDialog.Builder builder = new AlertDialog.Builder(this);
builder.setMessage("Sorry, this application has experienced an error.");
AlertDialog alert = builder.create();
alert.show();
Log.e("ExampleActivity", "Caught exception: " + e + " While on User:" + User.toString());
}

When the application encounters an exception it will write the user object to the log. Because the user object contains location information, the user's location is also written to the log.

Example 5

The following is an actual MySQL error statement:

(result)
Example Language: SQL 
Warning: mysql_pconnect(): Access denied for user: 'root@localhost' (Using password: N1nj4) in /usr/local/www/wi-data/includes/database.inc on line 4

The error clearly exposes the database credentials.

Example 6

This code displays some information on a web page.

(bad code)
Example Language: JSP 
Social Security Number: <%= ssn %></br>Credit Card Number: <%= ccn %>

The code displays a user's credit card and social security numbers, even though they aren't absolutely necessary.

Example 7

The following program changes its behavior based on a debug flag.

(bad code)
Example Language: JSP 
<% if (Boolean.getBoolean("debugEnabled")) {
%>
User account number: <%= acctNo %>
<%
} %>

The code writes sensitive debug information to the client browser if the "debugEnabled" flag is set to true .

Example 8

This code uses location to determine the user's current US State location.

First the application must declare that it requires the ACCESS_FINE_LOCATION permission in the application's manifest.xml:

(bad code)
Example Language: XML 
<uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>

During execution, a call to getLastLocation() will return a location based on the application's location permissions. In this case the application has permission for the most accurate location possible:

(bad code)
Example Language: Java 
locationClient = new LocationClient(this, this, this);
locationClient.connect();
Location userCurrLocation;
userCurrLocation = locationClient.getLastLocation();
deriveStateFromCoords(userCurrLocation);

While the application needs this information, it does not need to use the ACCESS_FINE_LOCATION permission, as the ACCESS_COARSE_LOCATION permission will be sufficient to identify which US state the user is in.

+ Observed Examples
ReferenceDescription
Enumeration of valid usernames based on inconsistent responses
Account number enumeration via inconsistent responses.
User enumeration via discrepancies in error messages.
Telnet protocol allows servers to obtain sensitive environment information from clients.
Script calls phpinfo(), revealing system configuration to web user
Product sets a different TTL when a port is being filtered than when it is not being filtered, which allows remote attackers to identify filtered ports by comparing TTLs.
Version control system allows remote attackers to determine the existence of arbitrary files and directories via the -X command for an alternate history file, which causes different error messages to be returned.
Virtual machine allows malicious web site operators to determine the existence of files on the client by measuring delays in the execution of the getSystemResource method.
Product immediately sends an error message when a user does not exist, which allows remote attackers to determine valid usernames via a timing attack.
POP3 server reveals a password in an error message after multiple APOP commands are sent. Might be resultant from another weakness.
Program reveals password in error message if attacker can trigger certain database errors.
Composite: application running with high privileges (CWE-250) allows user to specify a restricted file to process, which generates a parsing error that leaks the contents of the file (CWE-209).
Direct request to library file in web application triggers pathname leak in error message.
Malformed regexp syntax leads to information exposure in error message.
Password exposed in debug information.
FTP client with debug option enabled shows password to the screen.
+ Potential Mitigations

Phase: Architecture and Design

Strategy: Separation of Privilege

Compartmentalize the system to have "safe" areas where trust boundaries can be unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary and always be careful when interfacing with a compartment outside of the safe area.

Ensure that appropriate compartmentalization is built into the system design and that the compartmentalization serves to allow for and further reinforce privilege separation functionality. Architects and designers should rely on the principle of least privilege to decide when it is appropriate to use and to drop system privileges.

+ Weakness Ordinalities
OrdinalityDescription
Primary
Developers may insert sensitive information that they do not believe, or they might forget to remove the sensitive information after it has been processed (where the weakness is a quality issue that might indirectly make it easier to introduce security-relevant weaknesses or make them more difficult to detect)
Resultant
Separate mistakes or weaknesses could inadvertently make the sensitive information available to an attacker, such as in a detailed error message that can be read by an unauthorized party (where the weakness is a quality issue that might indirectly make it easier to introduce security-relevant weaknesses or make them more difficult to detect)
+ Detection Methods

Automated Static Analysis - Binary or Bytecode

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Bytecode Weakness Analysis - including disassembler + source code weakness analysis
  • Inter-application Flow Analysis

Effectiveness: SOAR Partial

Dynamic Analysis with Automated Results Interpretation

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Web Application Scanner
  • Web Services Scanner
  • Database Scanners

Effectiveness: High

Dynamic Analysis with Manual Results Interpretation

According to SOAR, the following detection techniques may be useful:

Cost effective for partial coverage:
  • Fuzz Tester
  • Framework-based Fuzzer
  • Automated Monitored Execution
  • Monitored Virtual Environment - run potentially malicious code in sandbox / wrapper / virtual machine, see if it does anything suspicious

Effectiveness: SOAR Partial

Manual Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Manual Source Code Review (not inspections)

Effectiveness: High

Automated Static Analysis - Source Code

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Context-configured Source Code Weakness Analyzer
Cost effective for partial coverage:
  • Source code Weakness Analyzer

Effectiveness: High

Architecture or Design Review

According to SOAR, the following detection techniques may be useful:

Highly cost effective:
  • Formal Methods / Correct-By-Construction
Cost effective for partial coverage:
  • Attack Modeling
  • Inspection (IEEE 1028 standard) (can apply to requirements, design, source code, etc.)

Effectiveness: High

+ Memberships
This MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).635Weaknesses Originally Used by NVD from 2008 to 2016
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.717OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.963SFP Secondary Cluster: Exposed Data
MemberOfViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).1003Weaknesses for Simplified Mapping of Published Vulnerabilities
MemberOfViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).1200Weaknesses in the 2019 CWE Top 25 Most Dangerous Software Errors
MemberOfViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).1350Weaknesses in the 2020 CWE Top 25 Most Dangerous Software Weaknesses
+ Notes

Maintenance

As a result of mapping analysis in the 2020 Top 25, this weakness is under review, since it is frequently misused in mapping to cover many problems that lead to loss of confidentiality. See Extended Decription and Alternate Terms.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
PLOVERInformation Leak (information disclosure)
OWASP Top Ten 2007A6CWE More SpecificInformation Leakage and Improper Error Handling
WASC13Information Leakage
+ References
[REF-172] Chris Wysopal. "Mobile App Top 10 List". 2010-12-13. <http://www.veracode.com/blog/2010/12/mobile-app-top-10-list/>.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2006-07-19PLOVER
+ Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Likelihood_of_Exploit, Relationships, Taxonomy_Mappings, Weakness_Ordinalities
2008-10-14CWE Content TeamMITRE
updated Description
2009-12-28CWE Content TeamMITRE
updated Alternate_Terms, Description, Name
2010-02-16CWE Content TeamMITRE
updated Taxonomy_Mappings
2010-04-05CWE Content TeamMITRE
updated Related_Attack_Patterns
2011-03-29CWE Content TeamMITRE
updated Description, Relationships
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Related_Attack_Patterns, Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2013-02-21CWE Content TeamMITRE
updated Alternate_Terms, Applicable_Platforms, References
2014-06-23CWE Content TeamMITRE
updated Related_Attack_Patterns
2014-07-30CWE Content TeamMITRE
updated Detection_Factors, Relationships
2015-12-07CWE Content TeamMITRE
updated Relationships
2017-05-03CWE Content TeamMITRE
updated Related_Attack_Patterns
2017-11-08CWE Content TeamMITRE
updated References
2019-01-03CWE Content TeamMITRE
updated Related_Attack_Patterns
2019-06-20CWE Content TeamMITRE
updated Related_Attack_Patterns, Relationships
2019-09-19CWE Content TeamMITRE
updated Demonstrative_Examples, Observed_Examples, Relationships
2020-02-24CWE Content TeamMITRE
updated Applicable_Platforms, Demonstrative_Examples, Description, Name, Observed_Examples, Related_Attack_Patterns, Relationships, Weakness_Ordinalities
2020-06-25CWE Content TeamMITRE
updated Relationships
2020-08-20CWE Content TeamMITRE
updated Alternate_Terms, Description, Maintenance_Notes, Related_Attack_Patterns, Relationships
+ Previous Entry Names
Change DatePrevious Entry Name
2009-12-28Information Leak (Information Disclosure)
2020-02-24Information Exposure
More information is available — Please select a different filter.
Page Last Updated: August 20, 2020