Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.4)  

CWE-1295: Debug Messages Revealing Unnecessary Information

Weakness ID: 1295
Abstraction: Base
Structure: Simple
Status: Incomplete
Presentation Filter:
+ Description
The product fails to adequately prevent the revealing of unnecessary and potentially sensitive system information within debugging messages.
+ Extended Description

Debug messages are messages that help troubleshoot an issue by revealing the internal state of the system. For example, debug data in design can be exposed through internal memory array dumps or boot logs through interfaces like UART via TAP commands, scan chain, etc. Thus, the more information contained in a debug message, the easier it is to debug. However, there is also the risk of revealing information that could help an attacker either decipher a vulnerability, and/or gain a better understanding of the system. Thus, this extra information could lower the “security by obscurity” factor. While “security by obscurity” alone is insufficient, it can help as a part of “Defense-in-depth”.

+ Relationships

The table(s) below shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.

+ Relevant to the view "Research Concepts" (CWE-1000)
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.200Exposure of Sensitive Information to an Unauthorized Actor
+ Relevant to the view "Hardware Design" (CWE-1194)
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1207Debug and Test Problems
+ Modes Of Introduction

The different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.

+ Applicable Platforms
The listings below show possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.


Class: Language-Independent (Undetermined Prevalence)

Operating Systems

Class: OS-Independent (Undetermined Prevalence)


Class: Architecture-Independent (Undetermined Prevalence)


Class: Technology-Independent (Undetermined Prevalence)

+ Common Consequences

The table below specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

Access Control

Technical Impact: Read Memory; Bypass Protection Mechanism; Gain Privileges or Assume Identity; Varies by Context

+ Demonstrative Examples

Example 1

This example here shows how an attacker can take advantage of unnecessary information in debug messages.

Example 1: Suppose in response to a Test Access Port (TAP) chaining request the debug message also reveals the current TAP hierarchy (the full topology) in addition to the success/failure message.

Example 2: In response to a password-filling request, the debug message, instead of a simple Granted/Denied response, prints an elaborate message, “The user-entered password does not match the actual password stored in <directory name>.”

The result of the above examples is that the user is able to gather additional unauthorized information about the system from the debug messages.

The solution is to ensure that Debug messages do not reveal additional details.

+ Observed Examples
Cryptographic keys are printed in modem debug messages in snapdragon mobile and snapdragon wear in versions MDM9607, MDM9615, MDM9625, MDM9635M, MDM9640, MDM9645, MDM9650, MDM9655, MSM8909W, SD 210/SD 212/SD 205, SD 410/12, SD 425, SD 427, SD 430, SD 435, SD 450, SD 615/16/SD 415, SD 625, SD 636, SD 650/52, SD 800, SD 810, SD 820, SD 835, SDA660, SDM630, SDM660, and Snapdragon_High_Med_2016.
+ Potential Mitigations

Phase: Implementation

Ensure that a debug message does not reveal any unnecessary information during the debug process for the intended response.
+ References
[REF-1112] "Android Security Bulletin—December 2018". <>.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2020-05-31Parbati Kumar Manna, Hareesh Khattri, Arun KanuparthiIntel Corporation
More information is available — Please select a different filter.
Page Last Updated: March 15, 2021