| Home > CWE List > CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere (4.18) |  | 
| CWE-497: Exposure of Sensitive System Information to an Unauthorized Control Sphere
 View customized information: For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
	
	
		
        	For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
	
	
		
        	For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record).  Example: tool developers, security researchers.
	
	
			
        	For users who wish to see all available information for the CWE/CAPEC entry.
	
	
		
        	For users who want to customize what details are displayed. 
    ×
     Edit Custom FilterThe product does not properly prevent sensitive system-level information from being accessed by unauthorized actors who do not have the same level of access to the underlying system as the product does. Network-based products, such as web applications, often run on top of an operating system or similar environment. When the product communicates with outside parties, details about the underlying system are expected to remain hidden, such as path names for data files, other OS users, installed packages, the application environment, etc. This system information may be provided by the product itself, or buried within diagnostic or debugging messages. Debugging information helps an adversary learn about the system and form an attack plan. An information exposure occurs when system data or debugging information leaves the program through an output stream or logging function that makes it accessible to unauthorized parties. Using other weaknesses, an attacker could cause errors to occur; the response to these errors can reveal detailed system information, along with other impacts. An attacker can use messages that reveal technologies, operating systems, and product versions to tune the attack against known vulnerabilities in these technologies. A product may use diagnostic methods that provide significant implementation details such as stack traces as part of its error handling mechanism.  This table specifies different individual consequences
                        associated with the weakness. The Scope identifies the application security area that is
                        violated, while the Impact describes the negative technical impact that arises if an
                        adversary succeeds in exploiting this weakness. The Likelihood provides information about
                        how likely the specific consequence is expected to be seen relative to the other
                        consequences in the list. For example, there may be high likelihood that a weakness will be
                        exploited to achieve a certain impact, but a low likelihood that it will be exploited to
                        achieve a different impact. 
 
  This table shows the weaknesses and high level categories that are related to this
                            weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
                            similar items that may exist at higher and lower levels of abstraction. In addition,
                            relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
                            may want to explore.  Relevant to the view "Research Concepts" (View-1000) 
  Relevant to the view "Software Development" (View-699) 
  The different Modes of Introduction provide information
                        about how and when this
                        weakness may be introduced. The Phase identifies a point in the life cycle at which
                        introduction
                        may occur, while the Note provides a typical scenario related to introduction during the
                        given
                        phase. 
  This listing shows possible areas for which the given
                        weakness could appear. These
                        may be for specific named Languages, Operating Systems, Architectures, Paradigms,
                        Technologies,
                        or a class of such platforms. The platform is listed along with how frequently the given
                        weakness appears for that instance. 
 Example 1 The following code prints the path environment variable to the standard error stream: (bad code) 
                                    
                                    Example Language: C 
                                    
                                 char* path = getenv("PATH"); ... sprintf(stderr, "cannot find exe on path %s\n", path); Example 2 This code prints all of the running processes belonging to the current user. (bad code) 
                                    
                                    Example Language: PHP 
                                    
                                 //assume getCurrentUser() returns a username that is guaranteed to be alphanumeric (avoiding CWE-78) $userName = getCurrentUser(); $command = 'ps aux | grep ' . $userName; system($command); If invoked by an unauthorized web user, it is providing a web page of potentially sensitive information on the underlying system, such as command-line arguments (CWE-497). This program is also potentially vulnerable to a PATH based attack (CWE-426), as an attacker may be able to create malicious versions of the ps or grep commands. While the program does not explicitly raise privileges to run the system commands, the PHP interpreter may by default be running with higher privileges than users. Example 3 The following code prints an exception to the standard error stream: (bad code) 
                                    
                                    Example Language: Java 
                                    
                                 try { ...} catch (Exception e) { e.printStackTrace();} (bad code) 
                                    
                                    Example Language: Java 
                                    
                                 try { ...} catch (Exception e) { Console.Writeline(e);} Depending upon the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system will be vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In the example above, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program. Example 4 The following code constructs a database connection string, uses it to create a new connection to the database, and prints it to the console. (bad code) 
                                    
                                    Example Language: C# 
                                    
                                 string cs="database=northwind; server=mySQLServer..."; SqlConnection conn=new SqlConnection(cs); ... Console.Writeline(cs); Depending on the system configuration, this information can be dumped to a console, written to a log file, or exposed to a remote user. In some cases the error message tells the attacker precisely what sort of an attack the system is vulnerable to. For example, a database error message can reveal that the application is vulnerable to a SQL injection attack. Other error messages can reveal more oblique clues about the system. In the example above, the search path could imply information about the type of operating system, the applications installed on the system, and the amount of care that the administrators have put into configuring the program. Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry. 
 
  This MemberOf Relationships table shows additional CWE Categories and Views that
                                reference this weakness as a member. This information is often useful in understanding where a
                                weakness fits within the context of external information sources. 
 
 
 
 More information is available — Please edit the custom filter or select a different filter. | 
| Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. | ||
 
	                