CWE-454: External Initialization of Trusted Variables or Data Stores
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product initializes critical internal variables or data stores using inputs that can be modified by untrusted actors.
A product system should be reluctant to trust variables that have been initialized outside of its trust boundary, especially if they are initialized by users. The variables may have been initialized incorrectly. If an attacker can initialize the variable, then they can influence what the vulnerable system will do.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages PHP (Sometimes Prevalent) Class: Not Language-Specific (Undetermined Prevalence) Example 1 In the Java example below, a system property controls the debug level of the application. (bad code)
Example Language: Java
int debugLevel = Integer.getInteger("com.domain.application.debugLevel").intValue();
If an attacker is able to modify the system property, then it may be possible to coax the application into divulging sensitive information by virtue of the fact that additional debug information is printed/exposed as the debug level increases. Example 2 This code checks the HTTP POST request for a debug switch, and enables a debug mode if the switch is set. (bad code)
Example Language: PHP
$debugEnabled = false;
if ($_POST["debug"] == "true"){ $debugEnabled = true; }/.../ function login($username, $password){ if($debugEnabled){ }echo 'Debug Activated'; }phpinfo(); $isAdmin = True; return True; Any user can activate the debug mode, gaining administrator privileges. An attacker may also use the information printed by the phpinfo() function to further exploit the system. . This example also exhibits Information Exposure Through Debug Information (CWE-215)
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Relationship
Overlaps Missing variable initialization, especially in PHP.
Applicable Platform This is often found in PHP due to register_globals and the common practice of storing library/include files under the web document root so that they are available using a direct request.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |