CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-479: Signal Handler Use of a Non-reentrant Function (4.16)  
ID

CWE-479: Signal Handler Use of a Non-reentrant Function

Weakness ID: 479
Vulnerability Mapping: ALLOWED This CWE ID may be used to map to real-world vulnerabilities
Abstraction: Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product defines a signal handler that calls a non-reentrant function.
+ Extended Description

Non-reentrant functions are functions that cannot safely be called, interrupted, and then recalled before the first call has finished without resulting in memory corruption. This can lead to an unexpected system state and unpredictable results with a variety of potential consequences depending on context, including denial of service and code execution.

Many functions are not reentrant, but some of them can result in the corruption of memory if they are used in a signal handler. The function call syslog() is an example of this. In order to perform its functionality, it allocates a small amount of memory as "scratch space." If syslog() is suspended by a signal call and the signal handler calls syslog(), the memory used by both of these functions enters an undefined, and possibly, exploitable state. Implementations of malloc() and free() manage metadata in global structures in order to track which memory is allocated versus which memory is available, but they are non-reentrant. Simultaneous calls to these functions can cause corruption of the metadata.

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope Impact Likelihood
Integrity
Confidentiality
Availability

Technical Impact: Execute Unauthorized Code or Commands

It may be possible to execute arbitrary code through the use of a write-what-where condition.
Integrity

Technical Impact: Modify Memory; Modify Application Data

Signal race conditions often result in data corruption.
+ Potential Mitigations

Phase: Requirements

Require languages or libraries that provide reentrant functionality, or otherwise make it easier to avoid this weakness.

Phase: Architecture and Design

Design signal handlers to only set flags rather than perform complex functionality.

Phase: Implementation

Ensure that non-reentrant functions are not found in signal handlers.

Phase: Implementation

Use sanity checks to reduce the timing window for exploitation of race conditions. This is only a partial solution, since many attacks might fail, but other attacks still might work within the narrower window, even accidentally.

Effectiveness: Defense in Depth

+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
Nature Type ID Name
ChildOf Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 663 Use of a Non-reentrant Function in a Concurrent Context
ChildOf Variant Variant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource. 828 Signal Handler with Functionality that is not Asynchronous-Safe
CanPrecede Base Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource. 123 Write-what-where Condition
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Implementation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

C (Undetermined Prevalence)

C++ (Undetermined Prevalence)

+ Likelihood Of Exploit
Low
+ Demonstrative Examples

Example 1

In this example, a signal handler uses syslog() to log a message:

(bad code)
 
char *message;
void sh(int dummy) {
syslog(LOG_NOTICE,"%s\n",message);
sleep(10);
exit(0);
}
int main(int argc,char* argv[]) {
...
signal(SIGHUP,sh);
signal(SIGTERM,sh);
sleep(10);
exit(0);
}
If the execution of the first call to the signal handler is suspended after invoking syslog(), and the signal handler is called a second time, the memory allocated by syslog() enters an undefined, and possibly, exploitable state.

+ Observed Examples
Reference Description
signal handler calls function that ultimately uses malloc()
SIGCHLD signal to FTP server can cause crash under heavy load while executing non-reentrant functions like malloc/free.
+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Affected Resources
  • System Process
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 745 CERT C Secure Coding Standard (2008) Chapter 12 - Signals (SIG)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 847 The CERT Oracle Secure Coding Standard for Java (2011) Chapter 4 - Expressions (EXP)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 879 CERT C++ Secure Coding Section 11 - Signals (SIG)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1001 SFP Secondary Cluster: Use of an Improper API
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1166 SEI CERT C Coding Standard - Guidelines 11. Signals (SIG)
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1401 Comprehensive Categorization: Concurrency
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID may be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Unsafe function call from a signal handler
CERT C Secure Coding SIG30-C Exact Call only asynchronous-safe functions within signal handlers
CERT C Secure Coding SIG34-C Do not call signal() from within interruptible signal handlers
The CERT Oracle Secure Coding Standard for Java (2011) EXP01-J Never dereference null pointers
Software Fault Patterns SFP3 Use of an improper API
+ References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005. <https://cwe.mitre.org/documents/sources/TheCLASPApplicationSecurityProcess.pdf>. URL validated: 2024-11-17.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 13, "Signal Vulnerabilities", Page 791. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission Date Submitter Organization
2006-07-19
(CWE Draft 3, 2006-07-19)
CLASP
+ Modifications
Modification Date Modifier Organization
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
2008-09-08 CWE Content Team MITRE
updated Applicable_Platforms, Common_Consequences, Description, Relationships, Other_Notes, Taxonomy_Mappings
2008-11-24 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2010-09-27 CWE Content Team MITRE
updated Relationships
2010-12-13 CWE Content Team MITRE
updated Demonstrative_Examples, Description, Name, Observed_Examples, Other_Notes, Potential_Mitigations, Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences, Relationships, Taxonomy_Mappings
2011-06-27 CWE Content Team MITRE
updated Common_Consequences
2011-09-13 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2012-05-11 CWE Content Team MITRE
updated References, Relationships, Taxonomy_Mappings
2012-10-30 CWE Content Team MITRE
updated Demonstrative_Examples
2014-07-30 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2017-11-08 CWE Content Team MITRE
updated Observed_Examples, Relationships, Taxonomy_Mappings
2019-01-03 CWE Content Team MITRE
updated Relationships, Taxonomy_Mappings
2020-02-24 CWE Content Team MITRE
updated Description, References, Relationships
2020-12-10 CWE Content Team MITRE
updated Common_Consequences
2023-01-31 CWE Content Team MITRE
updated Description
2023-04-27 CWE Content Team MITRE
updated Detection_Factors, Relationships, Time_of_Introduction
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-10-26 CWE Content Team MITRE
updated Demonstrative_Examples
+ Previous Entry Names
Change Date Previous Entry Name
2010-12-13 Unsafe Function Call from a Signal Handler
Page Last Updated: November 19, 2024