Common Weakness Enumeration

A Community-Developed List of Software & Hardware Weakness Types

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.13)  

CWE-481: Assigning instead of Comparing

Weakness ID: 481
Abstraction: Variant
Structure: Simple
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.

Edit Custom Filter

+ Description
The code uses an operator for assignment when the intention was to perform a comparison.
+ Extended Description
In many languages the compare statement is very close in appearance to the assignment statement and are often confused. This bug is generally the result of a typo and usually causes obvious problems with program execution. If the comparison is in an if statement, the if statement will usually evaluate the value of the right-hand side of the predicate.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
ChildOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.480Use of Incorrect Operator
CanPrecedePillarPillar - a weakness that is the most abstract type of weakness and represents a theme for all class/base/variant weaknesses related to it. A Pillar is different from a Category as a Pillar is still technically a type of weakness that describes a mistake, while a Category represents a common characteristic used to group related things.697Incorrect Comparison
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.


C (Undetermined Prevalence)

C++ (Undetermined Prevalence)

Java (Undetermined Prevalence)

C# (Undetermined Prevalence)

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

Technical Impact: Alter Execution Logic

+ Likelihood Of Exploit
+ Demonstrative Examples

Example 1

The following C/C++ and C# examples attempt to validate an int input parameter against the integer value 100.

(bad code)
Example Language:
int isValid(int value) {
if (value=100) {
printf("Value is valid\n");
printf("Value is not valid\n");
(bad code)
Example Language: C# 
bool isValid(int value) {
if (value=100) {
Console.WriteLine("Value is valid.");
return true;
Console.WriteLine("Value is not valid.");
return false;

However, the expression to be evaluated in the if statement uses the assignment operator "=" rather than the comparison operator "==". The result of using the assignment operator instead of the comparison operator causes the int variable to be reassigned locally and the expression in the if statement will always evaluate to the value on the right hand side of the expression. This will result in the input value not being properly validated, which can cause unexpected results.

Example 2

In this example, we show how assigning instead of comparing can impact code when values are being passed by reference instead of by value. Consider a scenario in which a string is being processed from user input. Assume the string has already been formatted such that different user inputs are concatenated with the colon character. When the processString function is called, the test for the colon character will result in an insertion of the colon character instead, adding new input separators. Since the string was passed by reference, the data sentinels will be inserted in the original string (CWE-464), and further processing of the inputs will be altered, possibly malformed..

(bad code)
Example Language:
void processString (char *str) {
int i;

for(i=0; i<strlen(str); i++) {
if (isalnum(str[i])){
else if (str[i] = ':') {

Example 3

The following Java example attempts to perform some processing based on the boolean value of the input parameter. However, the expression to be evaluated in the if statement uses the assignment operator "=" rather than the comparison operator "==". As with the previous examples, the variable will be reassigned locally and the expression in the if statement will evaluate to true and unintended processing may occur.

(bad code)
Example Language: Java 
public void checkValid(boolean isValid) {
if (isValid = true) {
System.out.println("Performing processing");
else {
System.out.println("Not Valid, do not perform processing");

While most Java compilers will catch the use of an assignment operator when a comparison operator is required, for boolean variables in Java the use of the assignment operator within an expression is allowed. If possible, try to avoid using comparison operators on boolean variables in java. Instead, let the values of the variables stand for themselves, as in the following code.

(good code)
Example Language: Java 
public void checkValid(boolean isValid) {
if (isValid) {
System.out.println("Performing processing");
else {
System.out.println("Not Valid, do not perform processing");

Alternatively, to test for false, just use the boolean NOT operator.

(good code)
Example Language: Java 
public void checkValid(boolean isValid) {
if (!isValid) {
System.out.println("Not Valid, do not perform processing");
System.out.println("Performing processing");

Example 4

The following example demonstrates the weakness.

(bad code)
Example Language:
void called(int foo){
if (foo=1) printf("foo\n");
int main() {

return 0;
+ Potential Mitigations

Phase: Testing

Many IDEs and static analysis products will detect this problem.

Phase: Implementation

Place constants on the left. If one attempts to assign a constant with a variable, the compiler will produce an error.
+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.998SFP Secondary Cluster: Glitch in Computation
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1157SEI CERT C Coding Standard - Guidelines 03. Expressions (EXP)
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1410Comprehensive Categorization: Insufficient Control Flow Management
+ Vulnerability Mapping Notes

Usage: Allowed

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use


This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.


Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
CLASPAssigning instead of comparing
Software Fault PatternsSFP1Glitch in computation
CERT C Secure CodingEXP45-CCWE More AbstractDo not perform assignments in selection statements
+ References
[REF-18] Secure Software, Inc.. "The CLASP Application Security Process". 2005. <>.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 6, "Typos", Page 289. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
(CWE Draft 3, 2006-07-19)
+ Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Applicable_Platforms, Description, Relationships, Other_Notes, Taxonomy_Mappings
2009-05-27CWE Content TeamMITRE
updated Demonstrative_Examples
2009-07-27CWE Content TeamMITRE
updated Description, Other_Notes
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated References, Relationships
2012-10-30CWE Content TeamMITRE
updated Demonstrative_Examples, Potential_Mitigations
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2017-01-19CWE Content TeamMITRE
updated Relationships
2017-11-08CWE Content TeamMITRE
updated Demonstrative_Examples, Taxonomy_Mappings
2019-01-03CWE Content TeamMITRE
updated Relationships
2020-02-24CWE Content TeamMITRE
updated References, Relationships
2021-03-15CWE Content TeamMITRE
updated Demonstrative_Examples, Potential_Mitigations
2023-04-27CWE Content TeamMITRE
updated Detection_Factors, Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
Page Last Updated: October 26, 2023