CWE-480: Use of Incorrect Operator
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product accidentally uses the wrong operator, which changes the logic in security-relevant ways.
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Software Development" (CWE-699)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages C (Sometimes Prevalent) C++ (Sometimes Prevalent) Perl (Sometimes Prevalent) Class: Not Language-Specific (Undetermined Prevalence) Example 1 The following C/C++ and C# examples attempt to validate an int input parameter against the integer value 100. (bad code)
Example Language: C
int isValid(int value) {
if (value=100) { }printf("Value is valid\n"); }return(1); printf("Value is not valid\n"); return(0); (bad code)
Example Language: C#
bool isValid(int value) {
if (value=100) { }Console.WriteLine("Value is valid."); }return true; Console.WriteLine("Value is not valid."); return false; However, the expression to be evaluated in the if statement uses the assignment operator "=" rather than the comparison operator "==". The result of using the assignment operator instead of the comparison operator causes the int variable to be reassigned locally and the expression in the if statement will always evaluate to the value on the right hand side of the expression. This will result in the input value not being properly validated, which can cause unexpected results. Example 2 The following C/C++ example shows a simple implementation of a stack that includes methods for adding and removing integer values from the stack. The example uses pointers to add and remove integer values to the stack array variable. (bad code)
Example Language: C
#define SIZE 50
int *tos, *p1, stack[SIZE]; void push(int i) { p1++;
if(p1==(tos+SIZE)) { // Print stack overflow error message and exit *p1 == i; int pop(void) { if(p1==tos) {
// Print stack underflow error message and exit p1--; return *(p1+1); int main(int argc, char *argv[]) { // initialize tos and p1 to point to the top of stack tos = stack; p1 = stack; // code to add and remove items from stack ... return 0; The push method includes an expression to assign the integer value to the location in the stack pointed to by the pointer variable. However, this expression uses the comparison operator "==" rather than the assignment operator "=". The result of using the comparison operator instead of the assignment operator causes erroneous values to be entered into the stack and can cause unexpected results. Example 3 The example code below is taken from the CVA6 processor core of the HACK@DAC'21 buggy OpenPiton SoC. Debug access allows users to access internal hardware registers that are otherwise not exposed for user access or restricted access through access control protocols. Hence, requests to enter debug mode are checked and authorized only if the processor has sufficient privileges. In addition, debug accesses are also locked behind password checkers. Thus, the processor enters debug mode only when the privilege level requirement is met, and the correct debug password is provided. The following code [REF-1377] illustrates an instance of a vulnerable implementation of debug mode. The core correctly checks if the debug requests have sufficient privileges and enables the debug_mode_d and debug_mode_q signals. It also correctly checks for debug password and enables umode_i signal. (bad code)
Example Language: Verilog
module csr_regfile #(
...
// check that we actually want to enter debug depending on the privilege level we are currently in
...unique case (priv_lvl_o)
riscv::PRIV_LVL_M: begin
debug_mode_d = dcsr_q.ebreakm;
riscv::PRIV_LVL_U: begin
debug_mode_d = dcsr_q.ebreaku;
assign priv_lvl_o = (debug_mode_q || umode_i) ? riscv::PRIV_LVL_M : priv_lvl_q;
...
debug_mode_q <= debug_mode_d;
...However, it grants debug access and changes the privilege level, priv_lvl_o, even when one of the two checks is satisfied and the other is not. Because of this, debug access can be granted by simply requesting with sufficient privileges (i.e., debug_mode_q is enabled) and failing the password check (i.e., umode_i is disabled). This allows an attacker to bypass the debug password checking and gain debug access to the core, compromising the security of the processor. A fix to this issue is to only change the privilege level of the processor when both checks are satisfied, i.e., the request has enough privileges (i.e., debug_mode_q is enabled) and the password checking is successful (i.e., umode_i is enabled) [REF-1378]. (good code)
Example Language: Verilog
module csr_regfile #(
...
// check that we actually want to enter debug depending on the privilege level we are currently in
...unique case (priv_lvl_o)
riscv::PRIV_LVL_M: begin
debug_mode_d = dcsr_q.ebreakm;
riscv::PRIV_LVL_U: begin
debug_mode_d = dcsr_q.ebreaku;
assign priv_lvl_o = (debug_mode_q && umode_i) ? riscv::PRIV_LVL_M : priv_lvl_q;
...
debug_mode_q <= debug_mode_d;
...
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |