CWE-481: Assigning instead of Comparing
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe code uses an operator for assignment when the intention was to perform a comparison.
In many languages the compare statement is very close in appearance to the assignment statement and are often confused. This bug is generally the result of a typo and usually causes obvious problems with program execution. If the comparison is in an if statement, the if statement will usually evaluate the value of the right-hand side of the predicate.
![]()
![]() ![]()
![]()
![]() Languages C (Undetermined Prevalence) C++ (Undetermined Prevalence) Java (Undetermined Prevalence) C# (Undetermined Prevalence) Example 1 The following C/C++ and C# examples attempt to validate an int input parameter against the integer value 100. (bad code)
Example Language: C
int isValid(int value) {
if (value=100) { }printf("Value is valid\n"); }return(1); printf("Value is not valid\n"); return(0); (bad code)
Example Language: C#
bool isValid(int value) {
if (value=100) { }Console.WriteLine("Value is valid."); }return true; Console.WriteLine("Value is not valid."); return false; However, the expression to be evaluated in the if statement uses the assignment operator "=" rather than the comparison operator "==". The result of using the assignment operator instead of the comparison operator causes the int variable to be reassigned locally and the expression in the if statement will always evaluate to the value on the right hand side of the expression. This will result in the input value not being properly validated, which can cause unexpected results. Example 2 In this example, we show how assigning instead of comparing can impact code when values are being passed by reference instead of by value. Consider a scenario in which a string is being processed from user input. Assume the string has already been formatted such that different user inputs are concatenated with the colon character. When the processString function is called, the test for the colon character will result in an insertion of the colon character instead, adding new input separators. Since the string was passed by reference, the data sentinels will be inserted in the original string (CWE-464), and further processing of the inputs will be altered, possibly malformed.. (bad code)
Example Language: C
void processString (char *str) {
int i;
for(i=0; i<strlen(str); i++) { if (isalnum(str[i])){ }processChar(str[i]); }else if (str[i] = ':') { movingToNewInput();} }Example 3 The following Java example attempts to perform some processing based on the boolean value of the input parameter. However, the expression to be evaluated in the if statement uses the assignment operator "=" rather than the comparison operator "==". As with the previous examples, the variable will be reassigned locally and the expression in the if statement will evaluate to true and unintended processing may occur. (bad code)
Example Language: Java
public void checkValid(boolean isValid) {
if (isValid = true) { }System.out.println("Performing processing"); }doSomethingImportant(); else { System.out.println("Not Valid, do not perform processing"); }return; While most Java compilers will catch the use of an assignment operator when a comparison operator is required, for boolean variables in Java the use of the assignment operator within an expression is allowed. If possible, try to avoid using comparison operators on boolean variables in java. Instead, let the values of the variables stand for themselves, as in the following code. (good code)
Example Language: Java
public void checkValid(boolean isValid) {
if (isValid) { }System.out.println("Performing processing"); }doSomethingImportant(); else { System.out.println("Not Valid, do not perform processing"); }return; Alternatively, to test for false, just use the boolean NOT operator. (good code)
Example Language: Java
public void checkValid(boolean isValid) {
if (!isValid) { }System.out.println("Not Valid, do not perform processing"); }return; System.out.println("Performing processing"); doSomethingImportant(); Example 4 The following example demonstrates the weakness. (bad code)
Example Language: C
void called(int foo){
if (foo=1) printf("foo\n"); }int main() { called(2); return 0;
![]()
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |