CWE-567: Unsynchronized Access to Shared Data in a Multithreaded Context
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product does not properly synchronize shared data, such as static variables across threads, which can lead to undefined behavior and unpredictable data changes.
Within servlets, shared static variables are not protected from concurrent access, but servlets are multithreaded. This is a typical programming mistake in J2EE applications, since the multithreading is handled by the framework. When a shared variable can be influenced by an attacker, one thread could wind up modifying the variable to contain data that is not valid for a different thread that is also using the data within the variable. Note that this weakness is not unique to servlets. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "CISQ Quality Measures (2020)" (CWE-1305)
Relevant to the view "CISQ Data Protection Measures" (CWE-1340)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Java (Undetermined Prevalence) Example 1 The following code implements a basic counter for how many times the page has been accesed. (bad code)
Example Language: Java
public static class Counter extends HttpServlet {
static int count = 0; }protected void doGet(HttpServletRequest in, HttpServletResponse out) throws ServletException, IOException { out.setContentType("text/plain"); }PrintWriter p = out.getWriter(); count++; p.println(count + " hits so far!"); Consider when two separate threads, Thread A and Thread B, concurrently handle two different requests:
At this point, both Thread A and Thread B print that one hit has been seen, even though two separate requests have been processed. The value of count should be 2, not 1. While this example does not have any real serious implications, if the shared variable in question is used for resource tracking, then resource consumption could occur. Other scenarios exist.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2024, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |