CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism') (4.17)  
ID

CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

Weakness ID: 637
Vulnerability Mapping: ALLOWED This CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product uses a more complex mechanism than necessary, which could lead to resultant weaknesses when the mechanism is not correctly understood, modeled, configured, implemented, or used.
+ Extended Description
Security mechanisms should be as simple as possible. Complex security mechanisms may engender partial implementations and compatibility problems, with resulting mismatches in assumptions and implemented security. A corollary of this principle is that data specifications should be as simple as possible, because complex data specifications result in complex validation code. Complex tasks and systems may also need to be guarded by complex security checks, so simple systems should be preferred.
+ Alternate Terms
Unnecessary Complexity
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Impact Details

Other

Scope: Other

+ Potential Mitigations
Phase(s) Mitigation

Architecture and Design

Avoid complex security mechanisms when simpler ones would meet requirements. Avoid complex data models, and unnecessarily complex operations. Adopt architectures that provide guarantees, simplify understanding through elegance and abstraction, and that can be implemented similarly. Modularize, isolate and do not trust complex code, and apply other secure programming principles on these modules (e.g., least privilege) to mitigate vulnerabilities.
+ Relationships
Section Help This table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (View-1000)
Nature Type ID Name
ChildOf Class Class - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource. 657 Violation of Secure Design Principles
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
Phase Note
Architecture and Design
Implementation
Operation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.
Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1


The IPSEC specification is complex, which resulted in bugs, partial implementations, and incompatibilities between vendors.



Example 2


HTTP Request Smuggling (CWE-444) attacks are feasible because there are not stringent requirements for how illegal or inconsistent HTTP headers should be handled. This can lead to inconsistent implementations in which a proxy or firewall interprets the same data stream as a different set of requests than the end points in that stream.



+ Selected Observed Examples

Note: this is a curated list of examples for users to understand the variety of ways in which this weakness can be introduced. It is not a complete list of all CVEs that are related to this CWE entry.

Reference Description
Support for complex regular expressions leads to a resultant algorithmic complexity weakness (CWE-407).
Either a filename extension and a Content-Type header could be used to infer the file type, but the developer only checks the Content-Type, enabling unrestricted file upload (CWE-434).
In Apache environments, a "filename.php.gif" can be redirected to the PHP interpreter instead of being sent as an image/gif directly to the user. Not knowing this, the developer only checks the last extension of a submitted filename, enabling arbitrary code execution.
The developer cleanses the $_REQUEST superglobal array, but PHP also populates $_GET, allowing attackers to bypass the protection mechanism and conduct SQL injection attacks against code that uses $_GET.
+ Weakness Ordinalities
Ordinality Description
Primary
(where the weakness exists independent of other weaknesses)
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
Nature Type ID Name
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 975 SFP Secondary Cluster: Architecture
MemberOf CategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic. 1418 Comprehensive Categorization: Violation of Secure Design Principles
+ Vulnerability Mapping Notes
Usage ALLOWED-WITH-REVIEW
(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)
Reasons Abstraction, Other

Rationale

This CWE entry is a Class, but it does not have Base-level children.

Comments

This entry is classified in a part of CWE's hierarchy that does not have sufficiently low-level coverage, which might reflect a lack of classification-oriented weakness research in the software security community. Conduct careful root cause analysis to determine the original mistake that led to this weakness. If closer analysis reveals that this weakness is appropriate, then this might be the best available CWE to use for mapping. If no other option is available, then it is acceptable to map to this CWE.
+ References
[REF-196] Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer Systems". Proceedings of the IEEE 63. 1975-09.
<http://web.mit.edu/Saltzer/www/publications/protection/>.
[REF-524] Sean Barnum and Michael Gegick. "Economy of Mechanism". 2005-09-13.
<https://web.archive.org/web/20220126060058/https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/economy-of-mechanism>. (URL validated: 2023-04-07)
+ Content History
+ Submissions
Submission Date Submitter Organization
2008-01-18
(CWE Draft 8, 2008-01-30)
Pascal Meunier Purdue University
+ Contributions
Contribution Date Contributor Organization
2024-09-13
(CWE 4.17, 2025-04-03)
David Rothenberg
Suggested changes to the mapping notes.
+ Modifications
Modification Date Modifier Organization
2025-04-03
(CWE 4.17, 2025-04-03)
CWE Content Team MITRE
updated Mapping_Notes
2023-10-26 CWE Content Team MITRE
updated Demonstrative_Examples
2023-06-29 CWE Content Team MITRE
updated Mapping_Notes
2023-04-27 CWE Content Team MITRE
updated References, Relationships
2023-01-31 CWE Content Team MITRE
updated Description
2022-10-13 CWE Content Team MITRE
updated References
2020-02-24 CWE Content Team MITRE
updated Relationships
2017-11-08 CWE Content Team MITRE
updated Applicable_Platforms, Causal_Nature
2014-07-30 CWE Content Team MITRE
updated Relationships
2012-10-30 CWE Content Team MITRE
updated Potential_Mitigations
2012-05-11 CWE Content Team MITRE
updated Relationships
2011-06-01 CWE Content Team MITRE
updated Common_Consequences
2010-12-13 CWE Content Team MITRE
updated Name, Research_Gaps
2009-01-12 CWE Content Team MITRE
updated Description, Name
2008-09-08 CWE Content Team MITRE
updated Description, Relationships, Weakness_Ordinalities
2008-07-01 Eric Dalci Cigital
updated Time_of_Introduction
+ Previous Entry Names
Change Date Previous Entry Name
2009-01-12 Design Principle Violation: Not Using Economy of Mechanism
2010-12-13 Failure to Use Economy of Mechanism
Page Last Updated: April 03, 2025