CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.15)  
ID

CWE-637: Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism')

Weakness ID: 637
Vulnerability Mapping: ALLOWEDThis CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review (with careful review of mapping notes)
Abstraction: ClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product uses a more complex mechanism than necessary, which could lead to resultant weaknesses when the mechanism is not correctly understood, modeled, configured, implemented, or used.
+ Extended Description
Security mechanisms should be as simple as possible. Complex security mechanisms may engender partial implementations and compatibility problems, with resulting mismatches in assumptions and implemented security. A corollary of this principle is that data specifications should be as simple as possible, because complex data specifications result in complex validation code. Complex tasks and systems may also need to be guarded by complex security checks, so simple systems should be preferred.
+ Alternate Terms
Unnecessary Complexity
+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Other

Technical Impact: Other

+ Potential Mitigations

Phase: Architecture and Design

Avoid complex security mechanisms when simpler ones would meet requirements. Avoid complex data models, and unnecessarily complex operations. Adopt architectures that provide guarantees, simplify understanding through elegance and abstraction, and that can be implemented similarly. Modularize, isolate and do not trust complex code, and apply other secure programming principles on these modules (e.g., least privilege) to mitigate vulnerabilities.
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.657Violation of Secure Design Principles
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
Architecture and Design
Implementation
Operation
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Demonstrative Examples

Example 1

The IPSEC specification is complex, which resulted in bugs, partial implementations, and incompatibilities between vendors.


Example 2

HTTP Request Smuggling (CWE-444) attacks are feasible because there are not stringent requirements for how illegal or inconsistent HTTP headers should be handled. This can lead to inconsistent implementations in which a proxy or firewall interprets the same data stream as a different set of requests than the end points in that stream.


+ Observed Examples
ReferenceDescription
Support for complex regular expressions leads to a resultant algorithmic complexity weakness (CWE-407).
Either a filename extension and a Content-Type header could be used to infer the file type, but the developer only checks the Content-Type, enabling unrestricted file upload (CWE-434).
In Apache environments, a "filename.php.gif" can be redirected to the PHP interpreter instead of being sent as an image/gif directly to the user. Not knowing this, the developer only checks the last extension of a submitted filename, enabling arbitrary code execution.
The developer cleanses the $_REQUEST superglobal array, but PHP also populates $_GET, allowing attackers to bypass the protection mechanism and conduct SQL injection attacks against code that uses $_GET.
+ Weakness Ordinalities
OrdinalityDescription
Primary
(where the weakness exists independent of other weaknesses)
+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.975SFP Secondary Cluster: Architecture
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1418Comprehensive Categorization: Violation of Secure Design Principles
+ Vulnerability Mapping Notes

Usage: ALLOWED-WITH-REVIEW

(this CWE ID could be used to map to real-world vulnerabilities in limited situations requiring careful review)

Reason: Abstraction

Rationale:

This CWE entry is a Class and might have Base-level children that would be more appropriate

Comments:

Examine children of this entry to see if there is a better fit
+ References
[REF-196] Jerome H. Saltzer and Michael D. Schroeder. "The Protection of Information in Computer Systems". Proceedings of the IEEE 63. 1975-09. <http://web.mit.edu/Saltzer/www/publications/protection/>.
[REF-524] Sean Barnum and Michael Gegick. "Economy of Mechanism". 2005-09-13. <https://web.archive.org/web/20220126060058/https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/economy-of-mechanism>. URL validated: 2023-04-07.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2008-01-18
(CWE Draft 8, 2008-01-30)
Pascal MeunierPurdue University
+ Modifications
Modification DateModifierOrganization
2008-07-01Eric DalciCigital
updated Time_of_Introduction
2008-09-08CWE Content TeamMITRE
updated Description, Relationships, Weakness_Ordinalities
2009-01-12CWE Content TeamMITRE
updated Description, Name
2010-12-13CWE Content TeamMITRE
updated Name, Research_Gaps
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2014-07-30CWE Content TeamMITRE
updated Relationships
2017-11-08CWE Content TeamMITRE
updated Applicable_Platforms, Causal_Nature
2020-02-24CWE Content TeamMITRE
updated Relationships
2022-10-13CWE Content TeamMITRE
updated References
2023-01-31CWE Content TeamMITRE
updated Description
2023-04-27CWE Content TeamMITRE
updated References, Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
2023-10-26CWE Content TeamMITRE
updated Demonstrative_Examples
+ Previous Entry Names
Change DatePrevious Entry Name
2009-01-12Design Principle Violation: Not Using Economy of Mechanism
2010-12-13Failure to Use Economy of Mechanism
Page Last Updated: July 16, 2024