CWE-642: External Control of Critical State Data
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.
For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.
For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.
For users who wish to see all available information for the CWE/CAPEC entry.
For users who want to customize what details are displayed.
×
Edit Custom FilterThe product stores security-critical state information about its users, or the product itself, in a location that is accessible to unauthorized actors.
If an attacker can modify the state information without detection, then it could be used to perform unauthorized actions or access unexpected resources, since the application programmer does not expect that the state can be changed. State information can be stored in various locations such as a cookie, in a hidden web form field, input parameter or argument, an environment variable, a database record, within a settings file, etc. All of these locations have the potential to be modified by an attacker. When this state information is used to control security or determine resource usage, then it may create a vulnerability. For example, an application may perform authentication, then save the state in an "authenticated=true" cookie. An attacker may simply create this cookie in order to bypass the authentication. This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Relevant to the view "Architectural Concepts" (CWE-1008)
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
This listing shows possible areas for which the given
weakness could appear. These
may be for specific named Languages, Operating Systems, Architectures, Paradigms,
Technologies,
or a class of such platforms. The platform is listed along with how frequently the given
weakness appears for that instance.
Languages Class: Not Language-Specific (Undetermined Prevalence) Technologies Web Server (Often Prevalent) Example 1 In the following example, an authentication flag is read from a browser cookie, thus allowing for external control of user state data. (bad code)
Example Language: Java
Cookie[] cookies = request.getCookies();
for (int i =0; i< cookies.length; i++) { Cookie c = cookies[i]; }if (c.getName().equals("authenticated") && Boolean.TRUE.equals(c.getValue())) { authenticated = true; }Example 2 The following code uses input from an HTTP request to create a file name. The programmer has not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/server.xml", which causes the application to delete one of its own configuration files (CWE-22). (bad code)
Example Language: Java
String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName); ... rFile.delete(); Example 3 The following code uses input from a configuration file to determine which file to open and echo back to the user. If the program runs with privileges and malicious users can change the configuration file, they can use the program to read any file on the system that ends with the extension .txt. (bad code)
Example Language: Java
fis = new FileInputStream(cfg.getProperty("sub")+".txt");
amt = fis.read(arr); out.println(arr); Example 4 This program is intended to execute a command that lists the contents of a restricted directory, then performs other actions. Assume that it runs with setuid privileges in order to bypass the permissions check by the operating system. (bad code)
Example Language: C
#define DIR "/restricted/directory"
char cmd[500]; sprintf(cmd, "ls -l %480s", DIR); /* Raise privileges to those needed for accessing DIR. */ RaisePrivileges(...); system(cmd); DropPrivileges(...); ... This code may look harmless at first, since both the directory and the command are set to fixed values that the attacker can't control. The attacker can only see the contents for DIR, which is the intended program behavior. Finally, the programmer is also careful to limit the code that executes with raised privileges. However, because the program does not modify the PATH environment variable, the following attack would work: (attack code)
Example 5 The following code segment implements a basic server that uses the "ls" program to perform a directory listing of the directory that is listed in the "HOMEDIR" environment variable. The code intends to allow the user to specify an alternate "LANG" environment variable. This causes "ls" to customize its output based on a given language, which is an important capability when supporting internationalization. (bad code)
Example Language: Perl
$ENV{"HOMEDIR"} = "/home/mydir/public/";
my $stream = AcceptUntrustedInputStream(); while (<$stream>) { chomp;
if (/^ENV ([\w\_]+) (.*)/) { $ENV{$1} = $2; }elsif (/^QUIT/) { ... } elsif (/^LIST/) { open($fh, "/bin/ls -l $ENV{HOMEDIR}|"); }while (<$fh>) { SendOutput($stream, "FILEINFO: $_"); }close($fh); The programmer takes care to call a specific "ls" program and sets the HOMEDIR to a fixed value. However, an attacker can use a command such as "ENV HOMEDIR /secret/directory" to specify an alternate directory, enabling a path traversal attack (CWE-22). At the same time, other attacks are enabled as well, such as OS command injection (CWE-78) by setting HOMEDIR to a value such as "/tmp; rm -rf /". In this case, the programmer never intends for HOMEDIR to be modified, so input validation for HOMEDIR is not the solution. A partial solution would be an allowlist that only allows the LANG variable to be specified in the ENV command. Alternately, assuming this is an authenticated user, the language could be stored in a local file so that no ENV command at all would be needed. While this example may not appear realistic, this type of problem shows up in code fairly frequently. See CVE-1999-0073 in the observed examples for a real-world example with similar behaviors.
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
More information is available — Please edit the custom filter or select a different filter. |
Use of the Common Weakness Enumeration (CWE™) and the associated references from this website are subject to the Terms of Use. CWE is sponsored by the U.S. Department of Homeland Security (DHS) Cybersecurity and Infrastructure Security Agency (CISA) and managed by the Homeland Security Systems Engineering and Development Institute (HSSEDI) which is operated by The MITRE Corporation (MITRE). Copyright © 2006–2025, The MITRE Corporation. CWE, CWSS, CWRAF, and the CWE logo are trademarks of The MITRE Corporation. |