CWE

Common Weakness Enumeration

A community-developed list of SW & HW weaknesses that can become vulnerabilities

New to CWE? click here!
CWE Most Important Hardware Weaknesses
CWE Top 25 Most Dangerous Weaknesses
Home > CWE List > CWE- Individual Dictionary Definition (4.14)  
ID

CWE-643: Improper Neutralization of Data within XPath Expressions ('XPath Injection')

Weakness ID: 643
Vulnerability Mapping: ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities
Abstraction: BaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers. For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts. For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers. For users who wish to see all available information for the CWE/CAPEC entry. For users who want to customize what details are displayed.
×

Edit Custom Filter


+ Description
The product uses external input to dynamically construct an XPath expression used to retrieve data from an XML database, but it does not neutralize or incorrectly neutralizes that input. This allows an attacker to control the structure of the query.
+ Extended Description
The net effect is that the attacker will have control over the information selected from the XML database and may use that ability to control application flow, modify logic, retrieve unauthorized data, or bypass important checks (e.g. authentication).
+ Relationships
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Research Concepts" (CWE-1000)
NatureTypeIDName
ChildOfBaseBase - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.91XML Injection (aka Blind XPath Injection)
ChildOfClassClass - a weakness that is described in a very abstract fashion, typically independent of any specific language or technology. More specific than a Pillar Weakness, but more general than a Base Weakness. Class level weaknesses typically describe issues in terms of 1 or 2 of the following dimensions: behavior, property, and resource.943Improper Neutralization of Special Elements in Data Query Logic
Section HelpThis table shows the weaknesses and high level categories that are related to this weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user may want to explore.
+ Relevant to the view "Architectural Concepts" (CWE-1008)
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1019Validate Inputs
+ Modes Of Introduction
Section HelpThe different Modes of Introduction provide information about how and when this weakness may be introduced. The Phase identifies a point in the life cycle at which introduction may occur, while the Note provides a typical scenario related to introduction during the given phase.
PhaseNote
ImplementationREALIZATION: This weakness is caused during implementation of an architectural security tactic.
+ Applicable Platforms
Section HelpThis listing shows possible areas for which the given weakness could appear. These may be for specific named Languages, Operating Systems, Architectures, Paradigms, Technologies, or a class of such platforms. The platform is listed along with how frequently the given weakness appears for that instance.

Languages

Class: Not Language-Specific (Undetermined Prevalence)

+ Common Consequences
Section HelpThis table specifies different individual consequences associated with the weakness. The Scope identifies the application security area that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in exploiting this weakness. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a weakness will be exploited to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Access Control

Technical Impact: Bypass Protection Mechanism

Controlling application flow (e.g. bypassing authentication).
Confidentiality

Technical Impact: Read Application Data

The attacker could read restricted XML content.
+ Likelihood Of Exploit
High
+ Demonstrative Examples

Example 1

Consider the following simple XML document that stores authentication information and a snippet of Java code that uses XPath query to retrieve authentication information:

(informative)
Example Language: XML 
<users>
<user>
<login>john</login>
<password>abracadabra</password>
<home_dir>/home/john</home_dir>
</user>
<user>
<login>cbc</login>
<password>1mgr8</password>
<home_dir>/home/cbc</home_dir>
</user>
</users>

The Java code used to retrieve the home directory based on the provided credentials is:

(bad code)
Example Language: Java 
XPath xpath = XPathFactory.newInstance().newXPath();
XPathExpression xlogin = xpath.compile("//users/user[login/text()='" + login.getUserName() + "' and password/text() = '" + login.getPassword() + "']/home_dir/text()");
Document d = DocumentBuilderFactory.newInstance().newDocumentBuilder().parse(new File("db.xml"));
String homedir = xlogin.evaluate(d);

Assume that user "john" wishes to leverage XPath Injection and login without a valid password. By providing a username "john" and password "' or ''='" the XPath expression now becomes

(attack code)
 
//users/user[login/text()='john' or ''='' and password/text() = '' or ''='']/home_dir/text()

This lets user "john" login without a valid password, thus bypassing authentication.

+ Potential Mitigations

Phase: Implementation

Use parameterized XPath queries (e.g. using XQuery). This will help ensure separation between data plane and control plane.

Phase: Implementation

Properly validate user input. Reject data where appropriate, filter where appropriate and escape where appropriate. Make sure input that will be used in XPath queries is safe in that context.
+ Detection Methods

Automated Static Analysis

Automated static analysis, commonly referred to as Static Application Security Testing (SAST), can find some instances of this weakness by analyzing source code (or binary/compiled code) without having to execute it. Typically, this is done by building a model of data flow and control flow, then searching for potentially-vulnerable patterns that connect "sources" (origins of input) with "sinks" (destinations where the data interacts with external components, a lower layer such as the OS, etc.)

Effectiveness: High

+ Memberships
Section HelpThis MemberOf Relationships table shows additional CWE Categories and Views that reference this weakness as a member. This information is often useful in understanding where a weakness fits within the context of external information sources.
NatureTypeIDName
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.929OWASP Top Ten 2013 Category A1 - Injection
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.990SFP Secondary Cluster: Tainted Input to Command
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1308CISQ Quality Measures - Security
MemberOfViewView - a subset of CWE entries that provides a way of examining CWE content. The two main view structures are Slices (flat lists) and Graphs (containing relationships between entries).1340CISQ Data Protection Measures
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1347OWASP Top Ten 2021 Category A03:2021 - Injection
MemberOfCategoryCategory - a CWE entry that contains a set of other entries that share a common characteristic.1409Comprehensive Categorization: Injection
+ Vulnerability Mapping Notes

Usage: ALLOWED

(this CWE ID could be used to map to real-world vulnerabilities)

Reason: Acceptable-Use

Rationale:

This CWE entry is at the Base level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.

Comments:

Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
+ Notes

Relationship

This weakness is similar to other weaknesses that enable injection style attacks, such as SQL injection, command injection and LDAP injection. The main difference is that the target of attack here is the XML database.
+ Taxonomy Mappings
Mapped Taxonomy NameNode IDFitMapped Node Name
WASC39XPath Injection
Software Fault PatternsSFP24Tainted input to command
+ References
[REF-531] Web Application Security Consortium. "XPath Injection". <http://projects.webappsec.org/w/page/13247005/XPath%20Injection>. URL validated: 2023-04-07.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 17, "XPath Injection", Page 1070. 1st Edition. Addison Wesley. 2006.
+ Content History
+ Submissions
Submission DateSubmitterOrganization
2008-01-30
(CWE Draft 8, 2008-01-30)
Evgeny LebanidzeCigital
+ Modifications
Modification DateModifierOrganization
2008-09-08CWE Content TeamMITRE
updated Common_Consequences, Relationships
2008-10-14CWE Content TeamMITRE
updated Description, Name, References, Relationship_Notes
2009-03-10CWE Content TeamMITRE
updated Demonstrative_Examples
2009-05-27CWE Content TeamMITRE
updated Name
2009-10-29CWE Content TeamMITRE
updated Common_Consequences
2010-02-16CWE Content TeamMITRE
updated Taxonomy_Mappings
2010-04-05CWE Content TeamMITRE
updated Description, Name
2010-06-21CWE Content TeamMITRE
updated Enabling_Factors_for_Exploitation
2010-12-13CWE Content TeamMITRE
updated Common_Consequences
2011-06-01CWE Content TeamMITRE
updated Common_Consequences
2012-05-11CWE Content TeamMITRE
updated References, Relationships
2012-10-30CWE Content TeamMITRE
updated Potential_Mitigations
2014-06-23CWE Content TeamMITRE
updated Relationships
2014-07-30CWE Content TeamMITRE
updated Relationships, Taxonomy_Mappings
2017-11-08CWE Content TeamMITRE
updated Applicable_Platforms, Enabling_Factors_for_Exploitation, Modes_of_Introduction, Relationships
2018-03-27CWE Content TeamMITRE
updated Relationships
2020-02-24CWE Content TeamMITRE
updated Relationships
2020-08-20CWE Content TeamMITRE
updated Relationships
2020-12-10CWE Content TeamMITRE
updated Relationships
2021-10-28CWE Content TeamMITRE
updated Relationships
2023-01-31CWE Content TeamMITRE
updated Description
2023-04-27CWE Content TeamMITRE
updated Detection_Factors, References, Relationships
2023-06-29CWE Content TeamMITRE
updated Mapping_Notes
2024-02-29
(CWE 4.14, 2024-02-29)
CWE Content TeamMITRE
updated Demonstrative_Examples
+ Previous Entry Names
Change DatePrevious Entry Name
2008-10-14Unsafe Treatment of XPath Input
2009-05-27Failure to Sanitize Data within XPath Expressions (aka 'XPath injection')
2010-04-05Failure to Sanitize Data within XPath Expressions ('XPath injection')
Page Last Updated: February 29, 2024