Vulnerability Mapping:ALLOWEDThis CWE ID may be used to map to real-world vulnerabilities Abstraction:
VariantVariant - a weakness that is linked to a certain type of product, typically involving a specific language or technology. More specific than a Base weakness. Variant level weaknesses typically describe issues in terms of 3 to 5 of the following dimensions: behavior, property, technology, language, and resource.
View customized information:
For users who are interested in more notional aspects of a weakness. Example: educators, technical writers, and project/program managers.For users who are concerned with the practical application and details about the nature of a weakness and how to prevent it from happening. Example: tool developers, security researchers, pen-testers, incident response analysts.For users who are mapping an issue to CWE/CAPEC IDs, i.e., finding the most appropriate CWE for a specific issue (e.g., a CVE record). Example: tool developers, security researchers.For users who wish to see all available information for the CWE/CAPEC entry.For users who want to customize what details are displayed.
×
Edit Custom Filter
Description
The product uses a one-way cryptographic hash against an input that should not be reversible, such as a password, but the product does not also use a salt as part of the input.
Extended Description
This makes it easier for attackers to pre-compute the hash value using dictionary attack techniques such as rainbow tables.
It should be noted that, despite common perceptions, the use of a good salt with a hash does not sufficiently increase the effort for an attacker who is targeting an individual password, or who has a large amount of computing resources available, such as with cloud-based services or specialized, inexpensive hardware. Offline password cracking can still be effective if the hash function is not expensive to compute; many cryptographic functions are designed to be efficient and can be vulnerable to attacks using massive computing resources, even if the hash is cryptographically strong. The use of a salt only slightly increases the computing requirements for an attacker compared to other strategies such as adaptive hash functions. See CWE-916 for more details.
Common Consequences
This table specifies different individual consequences
associated with the weakness. The Scope identifies the application security area that is
violated, while the Impact describes the negative technical impact that arises if an
adversary succeeds in exploiting this weakness. The Likelihood provides information about
how likely the specific consequence is expected to be seen relative to the other
consequences in the list. For example, there may be high likelihood that a weakness will be
exploited to achieve a certain impact, but a low likelihood that it will be exploited to
achieve a different impact.
Scope
Impact
Likelihood
Access Control
Technical Impact: Bypass Protection Mechanism; Gain Privileges or Assume Identity
If an attacker can gain access to the hashes, then the lack of a salt makes it easier to conduct brute force attacks using techniques such as rainbow tables.
Potential Mitigations
Phase: Architecture and Design
Use an adaptive hash function that can be configured to change the amount of computational effort needed to compute the hash, such as the number of iterations ("stretching") or the amount of memory required. Some hash functions perform salting automatically. These functions can significantly increase the overhead for a brute force attack compared to intentionally-fast functions such as MD5. For example, rainbow table attacks can become infeasible due to the high computing overhead. Finally, since computing power gets faster and cheaper over time, the technique can be reconfigured to increase the workload without forcing an entire replacement of the algorithm in use.
Some hash functions that have one or more of these desired properties include bcrypt [REF-291], scrypt [REF-292], and PBKDF2 [REF-293]. While there is active debate about which of these is the most effective, they are all stronger than using salts with hash functions with very little computing overhead.
Note that using these functions can have an impact on performance, so they require special consideration to avoid denial-of-service attacks. However, their configurability provides finer control over how much CPU and memory is used, so it could be adjusted to suit the environment's needs.
Effectiveness: High
Phase: Architecture and Design
If a technique that requires extra computational effort can not be implemented, then for each password that is processed, generate a new random salt using a strong random number generator with unpredictable seeds. Add the salt to the plaintext password before hashing it. When storing the hash, also store the salt. Do not use the same salt for every password.
Effectiveness: Limited
Note:
Be aware that salts will not reduce the workload of a targeted attack against an individual hash (such as the password for a critical person), and in general they are less effective than other hashing techniques such as increasing the computation time or memory overhead. Without a built-in workload, modern attacks can compute large numbers of hashes, or even exhaust the entire space of all possible passwords, within a very short amount of time, using massively-parallel computing and GPU, ASIC, or FPGA hardware.
Phases: Implementation; Architecture and Design
When using industry-approved techniques, use them correctly. Don't cut corners by skipping resource-intensive steps (CWE-325). These steps are often essential for preventing common attacks.
Relationships
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Research Concepts" (CWE-1000)
Nature
Type
ID
Name
ChildOf
Base - a weakness that is still mostly independent of a resource or technology, but with sufficient details to provide specific methods for detection and prevention. Base level weaknesses typically describe issues in terms of 2 or 3 of the following dimensions: behavior, property, technology, language, and resource.
This table shows the weaknesses and high level categories that are related to this
weakness. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to
similar items that may exist at higher and lower levels of abstraction. In addition,
relationships such as PeerOf and CanAlsoBe are defined to show similar weaknesses that the user
may want to explore.
Relevant to the view "Architectural Concepts" (CWE-1008)
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
In cryptography, salt refers to some random addition of data to an input before hashing to make dictionary attacks more difficult.
Modes
Of Introduction
The different Modes of Introduction provide information
about how and when this
weakness may be introduced. The Phase identifies a point in the life cycle at which
introduction
may occur, while the Note provides a typical scenario related to introduction during the
given
phase.
Phase
Note
Implementation
REALIZATION: This weakness is caused during implementation of an architectural security tactic.
Demonstrative Examples
Example 1
In both of these examples, a user is logged in if their given password matches a stored password:
(bad code)
Example Language: C
unsigned char *check_passwd(char *plaintext) {
ctext = simple_digest("sha1",plaintext,strlen(plaintext), ... ); //Login if hash matches stored hash if (equal(ctext, secret_password())) {
login_user();
}
}
(bad code)
Example Language: Java
String plainText = new String(plainTextIn); MessageDigest encer = MessageDigest.getInstance("SHA"); encer.update(plainTextIn); byte[] digest = password.digest(); //Login if hash matches stored hash if (equal(digest,secret_password())) {
login_user();
}
This code relies exclusively on a password mechanism (CWE-309) using only one factor of authentication (CWE-308). If an attacker can steal or guess a user's password, they are given full access to their account. Note this code also uses SHA-1, which is a weak hash (CWE-328). It also does not use a salt (CWE-759).
Example 2
In this example, a new user provides a new username and password to create an account. The program hashes the new user's password then stores it in a database.
# UpdateUserLogin returns True on success, False otherwise return updateUserLogin(userName,hashedPassword)
While it is good to avoid storing a cleartext password, the program does not provide a salt to the hashing function, thus increasing the chances of an attacker being able to reverse the hash and discover the original password if the database is compromised.
Fixing this is as simple as providing a salt to the hashing function on initialization:
This MemberOf Relationships table shows additional CWE Categories and Views that
reference this weakness as a member. This information is often useful in understanding where a
weakness fits within the context of external information sources.
Nature
Type
ID
Name
MemberOf
Category - a CWE entry that contains a set of other entries that share a common characteristic.
(this CWE ID may be used to map to real-world vulnerabilities)
Reason:
Acceptable-Use
Rationale:
This CWE entry is at the Variant level of abstraction, which is a preferred level of abstraction for mapping to the root causes of vulnerabilities.
Comments:
Carefully read both the name and description to ensure that this mapping is an appropriate fit. Do not try to 'force' a mapping to a lower-level Base/Variant simply to comply with this preferred level of abstraction.
[REF-632] Thomas Ptacek. "Enough With The Rainbow Tables: What You Need To Know About Secure Password Schemes". 2007-09-10.
<http://hashphp.org/hashing.html>.
URL validated: 2023-04-07.
[REF-62] Mark Dowd, John McDonald and Justin Schuh. "The Art of Software Security Assessment". Chapter 2, "Salt Values", Page 46. 1st Edition. Addison Wesley. 2006.